Maplesoft Blog

The Maplesoft blog contains posts coming from the heart of Maplesoft. Find out what is coming next in the world of Maple, and get the best tips and tricks from the Maple experts.

While preparing for a recent webinar, I ran across something that didn't behave the same way in Maple 2017 as it did in previous releases. In particular, it was the failure of the over-dot notation for t-derivatives to display with the over-dot. Turns out that this is due to a change in behavior of typesetting that was detailed in the What's New page for Maple 2017, a page I had looked at many times in the last few months, but apparently didn't comprehend fully. The details are below.

Prior to Maple 2017, under the aegis of extended typesetting, the following two lines of code would alert Maple that the over-dot notation for t-derivatives should be used in the output display.

However, this changed in Maple 2017. Extended typesetting is now the default, but these two lines of code are no longer sufficient to induce Maple to display the over-dot in output. Indeed, we would now have

as output. The change is documented in the following paragraph

lifted from the help page 

Thus, it now takes the additional command

to induce Maple to display the over-dot notation in output.

I must confess that, even though I pored over the "What's New" pages for Maple 2017, I completely missed the import of this change to typesetting. I stumbled over the issue while preparing for an upcoming webinar, and frantically sent out help calls to the developers back in the building. Fortunately, I was quickly set straight on the matter, but was disappointed in my own reading of all the implications of the typesetting changes in Maple 2017. So perhaps this note will alert other users to the changes, and to the help page wherein one finds those essential bits of information needed to complete the tasks we set for ourselves.

And one more thing - I was cautioned that the "= true" was essential. Without it, the command would act as a query, echoing the present state of the setting, and not making the desired change to the setting.

Maple 2017 has launched!

Maple 2017 is the result of hard work by an enthusiastic team of developers and mathematicians.

As ever, we’re guided by you, our users. Many of the new features are of a result of your feedback, while others are passion projects that we feel you will find value in.

Here’s a few of my favourite enhancements. There’s far more that’s new - see What’s New in Maple 2017 to learn more.


MapleCloud Package Manager

Since it was first introduced in Maple 14, the MapleCloud has made thousands of Maple documents and interactive applications available through a web interface.

Maple 2017 completely refreshes the MapleCloud experience. Allied with a new, crisp, interface, you can now download and install user-created packages.

Simply open the MapleCloud interface from within Maple, and a mouse click later, you see a list of user-created packages, continuously updated via the Internet. Two clicks later, you’ve downloaded and installed a package.

This completely bypasses the traditional process of searching for and downloading a package, copying to the right folder, and then modifying libname in Maple. That was a laborious process, and, unless I was motivated, stopped me from installing packages.

The MapleCloud hosts a growing number of packages.

Many regular visitors to MaplePrimes are already familiar with Sergey Moiseev’s DirectSearch package for optimization, equation solving and curve fitting.

My fellow product manager, @DSkoog has written a package for grouping data into similar clusters (called ClusterAnalysis on the Package Manager)

Here’s a sample from a package I hacked together for downloading maps images using the Google Maps API (it’s called Google Maps and Geocoding on the Package Manager).

You’ll also find user-developed packages for exploring AES-based encryption, orthogonal series expansions, building Maple shell scripts and more.

Simply by making the process of finding and installing packages trivially easy, we’ve opened up a new world of functionality to users.

Maple 2017 also offers a simple method for package authors to upload workbook-based packages to the MapleCloud.

We’re engaging with many package authors to add to the growing list of packages on the MapleCloud. We’d be interested in seeing your packages, too!


Advanced Math

We’re committed to continually improving the core symbolic math routines. Here area few examples of what to expect in Maple 2017.

Resulting from enhancements to the Risch algorithm, Maple 2017 now computes symbolic integrals that were previously intractable

Groeber:-Basis uses a new implementation of the FGLM algorithm. The example below runs about 200 times faster in Maple 2017.

gcdex now uses a sparse primitive polynomial remainder sequence together.  For sparse structured problems the new routine is orders of magnitude faster. The example below was previously intractable.

The asympt and limit commands can now handle asymptotic cases of the incomplete Γ function where both arguments tend to infinity and their quotient remains finite.

Among several improvements in mathematical functions, you can now calculate and manipulate the four multi-parameter Appell functions.


Appel functions are of increasing importance in quantum mechanics, molecular physics, and general relativity.

pdsolve has seen many enhancements. For example, you can tell Maple that a dependent variable is bounded. This has the potential of simplifying the form of a solution.


Plot Builder

Plotting is probably the most common application of Maple, and for many years, you’ve been able to create these plots without using commands, if you want to.  Now, the re-designed interactive Plot Builder makes this process easier and better.

When invoked by a context menu or command on an expression or function, a panel slides out from the right-hand side of the interface.


Generating and customizing plots takes a single mouse click. You alter plot types, change formatting options on the fly and more.

To help you better learn Maple syntax, you can also display the actual plot command.

Password Protected Content

You can distribute password-protected executable content. This feature uses the workbook file format introduced with Maple 2016.

You can lock down any worksheet in a Workbook. But from any other worksheet, you can send (author-specified) parameters into the locked worksheet, and extract (author-specified) results.


Plot Annotations

You can now get information to pop up when you hover over a point or a curve on a plot.

In this application, you see the location and magnitude of an earthquake when you hover over a point

Here’s a ternary diagram of the color of gold-silver-copper alloys. If you let your mouse hover over the points, you see the composition of the points

Plot annotations may seem like a small feature, but they add an extra layer of depth to your visualizations. I’ve started using them all the time!


Engineering Portal

In my experience, if you ask an engineer how they prefer to learn, the vast majority of them will say “show me an example”. The significantly updated Maple Portal for Engineers does just that, incorporating many more examples and sample applications.  In fact, it has a whole new Application Gallery containing dozens of applications that solve concrete problems from different branches of engineering while illustrating important Maple techniques.

Designed as a starting point for engineers using Maple, the Portal also includes information on math and programming, interface features for managing your projects, data analysis and visualization tools, working with physical and scientific data, and a variety of specialized topics.


Geographic Data

You can now generate and customize world maps. This for example, is a choropleth of European fertility rates (lighter colors indicate lower fertility rates)

You can plot great circles that show the shortest path between two locations, show varying levels of detail on the map, and even experiment with map projections.

A new geographic database contains over one million locations, cross-referenced with their longitude, latitude, political designation and population.

The database is tightly linked to the mapping tools. Here, we ask Maple to plot the location of country capitals with a population of greater than 8 million and a longitude lower than 30.


There’s much more to Maple 2017. It’s a deep, rich release that has something for everyone.

Visit What’s New in Maple 2017 to learn more.

Meta Keijzer-de Ruijter is a Project Manager for Digital Testing at TU Delft, an institution that is at the forefront of the digital revolution in academic institutions. Meta has been using Maple T.A. for years, and offered to provide her insight on the role that automated testing & assessment played in improving student pass rates at TU Delft.


Modern technology is transforming many aspects of the world we live in, including education. At TU Delft in the Netherlands, we have taken a leadership role in transforming learning through the use of technology. Our ambition is to get to a point where we are offering fully digitalized degree programs and we believe digital testing and assessment can play an important role in this process.


A few years ago we launched a project with the goal of using digital testing to drastically improve the pass rates in our programs. Digital testing helps organize testing more efficiently for a larger number of students, addressing issues of overcrowded classrooms, and high teaching workloads. To better facilitate this transformation, we decided to adopt Maple T.A., the online testing and assessment suite from Maplesoft. Maple T.A. also provides anytime/anywhere testing, allowing students to take tests digitally, even from remote locations.


Regular and repeated testing produces the best learning results because progressive monitoring offers instructors the possibility of making adjustments throughout the course. The randomization feature in Maple T.A. provides each student with an individual set of problems, reducing the likelihood that answers will be copied. Though Maple T.A. is specialized in mathematics, it also supports more common question types like multiple choice, multiple selection, fill-in-the-blanks and hot spot. Maple T.A.’s question randomization, possibilities for multiple response fields per question and question workflow (adaptive questions) are superior to other options. By offering regular homework assignments and analyzing the results, we gain better insight into the progress of students and the topics that students perceive as difficult. Our lecturers can use this insight to decide whether to repeat particular material or to offer it in another manner. In many courses, preparing and reviewing practice tests comprise an important, yet time-consuming task for lecturers, and Maple T.A. alleviates that burden.


At TU Delft, we require all first-year students to take a math entry test using Maple T.A in order to assess the required level of math. Since the assessment of the student’s ability is so heavily dependent upon qualifying tests, it is extremely important for the test to be completed under controlled conditions. In Maple T.A., it is easy to generate multiple versions of the test questions without increasing the burden of review, as the tests are graded immediately. Students that fail the entry test are offered a remedial course in which they receive explanations and complete exercises, under the supervision of student assistants. The use of Maple T.A. facilitates this process without placing additional burden on the teacher. When the practice tests and the associated feedback are placed in a shared item bank in Maple T.A., teachers are able to offer additional practice materials to students with little effort. It makes it considerably easier on us as teachers to be able to use a variety of question types, thus creating a varied test.


Each semester, TU Delft offers an English placement test that is taken by approximately 200 students and 50 PhD candidates, in which students are required to formulate their reasons for their program choices or research topics. It used to take four lecturers working full-time for two days to mark the tests and report the results to participants in a timely manner. The digitization of this test has saved us considerable time. The hundred fill-in-the-blank questions are now marked automatically, and we no longer have to decipher handwriting for the open questions!


TU Delft is not alone in its emphasis on digital testing; it has a prominent position on the agendas of many institutions in Europe and elsewhere. These institutions are intensively involved in improving, expanding and advocating the positive results from digital testing and digital learning experiences. Online education solutions like Maple T.A. are playing a key role in improving the quality of digital offerings at institutions.

I am very pleased to announce a new user community centered around Maplesoft's online testing and assessment and courseware products. The new site is specifically for instructors and administrators currently using Maple T.A. or Möbius. This community of users are a small, specialised group who we want to bring together so they can share ideas and best practices. To find the community, go to either or

"The Maple T.A. Community has grown organically to support new developers as they pool their knowledge and queries. This has resulted in a fluid searchable structure, with answers available for all levels of question - from beginner to pushing the frontiers of what Maple T.A. has been designed to do. Our summer student interns rely on the Community as they become proficient in their question writing skills - and many have become contributors as they realise that they are in a position to teach others. Opening it out more broadly will be great in sharing good practice on a 'need to know now' basis.”

----Professor Nicola Wilkin, University of Birmingham


What content is in the community?

The community has many posts from active Maple T.A. and Möbius users from beginners to advanced users. The site is broken down into categories like 'Best Practices' - longer form posts that cover a broader concept in more detail and 'Quick Code snippets' that are small piece of code that you can drop straight into your question algorithms.

Much of the content is openly available and can be found by google, however there is additional content that can only be accessed by members of the community, such as the Maple T.A. school material which teaches you how to author content in Maple T.A. and Möbius.


Who runs the community

The community is jointly run by users based at the University of Birmingham, TU Wien, The University of Turin and TU Delft.


How does this fit into Mapleprimes?

It began as an offshoot of a private, internal customer forum. As this community grows, the ultimate goal is to eventually roll it into MaplePrimes proper. But this alternative site gave us the quickest way to get up and running. Maple T.A. and Möbius questions and posts are still welcome on MaplePrimes, and will continue to be monitored by Maplesoft.


How do I access the community?

You can find the community by going to either or


Where else can I get support for Maple T.A. and Mobiüs?

Official support for Maple T.A. and Möbius is provided by the wonderful Customer Success Team at Maplesoft. You can contact them at For other contact methods see



I am pleased to announce the public release of Möbius, the online courseware environment that focuses on science, technology, engineering, and mathematics education. After months of extensive pilot testing at select leading academic institutions around the world, Möbius is now available to everyone for your online learning needs.

We are very excited about Möbius. As you can imagine, many of us here at Maplesoft have backgrounds in STEM fields, and we are truly excited to be working on a project that gives students a hands-on approach to learning math-based content.  You can’t learn math (or science, or engineering, or …) just by reading about it or listening to someone talk about it. You have to do it, and that’s what Möbius lets students do, online, with instant feedback.  Not only can students explore concepts interactively, but they can find out immediately what they’ve understood and what they haven’t - not a few hours after the lecture as they are reviewing their notes, not two weeks later when they get their assignments back, but while they are in the middle of learning the lesson.

During its pilot phase, Möbius was used by multiple institutions around the world for a variety of projects, such as preparing students in advance for their first year math and engineering courses, and for complete online courses.  Over one hundred thousand students have already used Möbius, and the experiences of these students and their instructors has fed back into the development process, resulting in this public release.  You can read about the experiences of the University of Waterloo, the University of Birmingham, and the Perimeter Institute for Theoretical Physics on our web site.

We are also happy to announce that Maplesoft has partnered with the University of Waterloo, one of the largest institutions in the world for STEM education, to provide institutions and professors with rich online courses and materials that enable students to learn by doing.  These Möbius courses are created by experts at the University of Waterloo for use by their own students and for their outreach programs, and will be made available to other Möbius users.  Course materials range from late high school to the graduate level, with initial offerings available soon and many more to follow.

Visit the Möbius section of our web site for lots more information, including videos, whitepapers, case studies, and upcoming user summits.

Ilias Kotsireas is a Professor and Director of the CARGO lab at Wilfrid Laurier University, in Waterloo Ontario.

Throughout my career as a teacher, I’ve had the opportunity to work with students from around the globe. I’ve been able to work with students in other countries, immersing myself in their culture and learning environment. This has allowed me to experience the differences in educational delivery first hand, and to assess how education is viewed in other parts of the world.

On more than one occasion, I’ve visited the city of Guangzhou, China, to teach summer and winter school courses, beginning in 2007 and most recently in 2015 and 2016. During this time, I have witnessed tremendous growth in the development of Chinese Universities, as well as Chinese culture as a whole.  For example, the two largest supercomputers in the world - according to the website  - are located in China.  Another indication of the scale of this extraordinary growth is the fact that China currently has more than 2,000 universities, government research facilities and laboratories.  Furthermore, China Central Television (CCTV) programs report that China is planning the creation of an additional 10 mega-cities, each comparable in size to Shanghai.

Ilias Kotserias stands with students and fellow professors at South China Normal University (SCNU) in Guangzhou, China.


Summer and winter school courses in China are incredibly intensive. Such courses can run for one or two weeks and include two lectures per day, one on the morning and one in the afternoon. A tremendous amount of material must be covered in a short amount of time to accommodate the entire course.

Overall, my experiences have shown that students in China are very enthusiastic about education. They are heavily engaged with the learning materials and often spend time with professors at the conclusion of a lecture to converse and ask questions about what they have just learned. Class sizes are significantly smaller and there is a lot of one-on-one time with students. Students in China take their studies very seriously; they are very focused and motivated to do well in their studies, and they bring a great deal of knowledge and curiosity to the classroom.  Professors cannot gloss over material or deliver a scripted lecture. Students hold professors accountable, and expect them to be knowledgeable and have a strong understanding of the material. They have a strong desire to learn and gain experiences and relevant skills that they can carry forward with them in their educational and professional careers.

Maplesoft graciously offered short term licenses to my students in China, so they could use Maple in the mathematics courses I was teaching. Using Maple allowed me to continue using an experimental approach to teaching that I use for my students back home in Canada.  This approach encourages students to start with simple experimentation that may also contain visual components, develop a plausible conjecture and subsequently attempt to solve it step by step.  This promotes a “learn by doing” paradigm that promotes active learning and helps students better understand key mathematical concepts. In a delightful episode, one Chinese student told me “I don’t understand your English accent,” but in teaching with Maple there are no accents I need to worry about!  Chinese students are inquisitive, respectful and conscientious; it is an absolutely gratifying experience working with them. 

I was first introduced to Maple when I was completing my Masters and Ph.D in France in the late 1990s. When I began teaching in 2001, I introduced Maple into my classrooms to improve my students’ ability to learn the materials, understand difficult concepts, and to create more sustainable engagement with them. Initially, it took some work to convince them to use Maple, as it was not among the conventional learning methods they were used to. Eventually students came to embrace Maple as a learning tool and I was able to use visual and interactive examples to engage them. With Maple, experimentation is at your fingertips and it allows me to incorporate an example-driven learning experience for my students.

It was a valuable experience to work with students from another culture and be able to engage them using the same method I use to engage my students back home. Maple is not only a powerful and convenient teaching tool, but it can also assist in bridging cultural gaps and creating a learning experience that is uniform across the globe.

   Maplesoft aims to promote innovation in science, technology, engineering and math (STEM) in high school students by partnering with various organizations, and sponsoring initiatives in education, research and innovation. Every year, Maplesoft commits time, funds and people to enhance the quality of math-based learning and discovery and to encourage high school students to strengthen their math skills.

   One such organization we partner with is The Perimeter Institute, a leading centre for scientific research, training and educational outreach in foundational theoretical physics.  Maplesoft currently serves as its Educational Outreach Champion, supporting various initiatives that promote math learning and exploration. Perhaps the most popular of its student outreach program is the annual International Summer School for Young Physicists (ISSYP), a two-week camp that brings together 40 exceptional students from high schools across the globe.  Each year students receive a complimentary copy of Maple, and use the product to practice and strengthen their math skills.  The ISSYP program also uses Möbius, the comprehensive online STEM courseware platform from Maplesoft, to offer preparatory course materials to students.  Completing lessons in Möbius aid in making the summer program a more productive and dynamic experience for the students.


International Summer School for Young Scientists at Perimeter Institute


   Who Wants to Be a Mathematician is a competition organized by the American Mathematical Society (AMS) for high school students in North America. Maplesoft has been a sponsor of the contest for many years.  Maple T.A., the testing and assessment tool by Maplesoft, is used to administer the tests online, saving significant time and money for the organizers. When Maplesoft first introduced Maple T.A. to the contest, taking the competition from pen-and-paper tests to online tests, the number of contestants doubled, with about 2000 students participating in the contest. Maplesoft also donates prizes to the games in order to promote the use and love of math by high school students.  This year will be first time the competition moves international. Six students in the UK took the Round 2 qualifying test, with the use of Maple T.A., and qualified for the live, on-stage finals of the UK edition of the competition that took place at the 2017 Maths Fest in London. Maplesoft is also supporting the spread of the WWTBAM contest to Canada in 2017.

Who Wants to be a Mathematician finals

Maplesoft also sponsors two outreach initiatives in Texas A&M University.  The Summer Educational Enrichment (SEE) Math Program is a summer workshop attended by gifted middle school students. Students spend two weeks exploring ideas such as algebra, geometry, graph theory, and topology.  The University also conducts the Integral Bee every year, a math based contest for high school students.

In addition to the above key projects, throughout the year Maplesoft also sponsors and is associated with a number of other competitions, conferences, and educational initiatives. A few of these are listed below.

  • The Connecticut Science & Engineering Fair is a yearly, statewide science and engineering fair open to all 7th through 12th grade students.  An important objective of their program is to attract young people to careers in science and engineering while developing skills essential to critical thinking.
  • FIRST Robotics Competition is a high school robotics competition. Each year, teams of high school students and mentors work during a six-week period to build game-playing robots that weigh up to 120 pounds.


FIRSTRobotics Competition

  • ScienceExpo Conference is a student-run event that engages students with STEM-related opportunities and workshops
  • SWATposium is an annual robotics conference that brings together nearly 40 First Robotic Competition teams from both Canada and the United States for a day of guest speakers, workshops and social activities.



  • FIRST LEGO League gives elementary and middle school students and their adult coaches the opportunity to work and create together to solve a common problem.


FIRST LEGO League at St. Luke's School in Waterloo

   Maplesoft’s objective of these sponsorships is to support those who inspire and channel young minds to be STEM focussed. By engaging them in exciting contests and programs the hope is that they build science, engineering, and technology skills at a young age and grow to be innovators and technology leaders of tomorrow.

Recently, I came across an addendum to a problem that appears in many calculus texts, an addendum I had never explored. It intrigued me, and I hope it will capture your attention too.

The problem is that of girding the equator of the earth with a belt, then extending by one unit (here, taken as the foot) the radius of the circle so formed. The question is by how much does the circumference of the belt increase. This problem usually appears in the section of the calculus text dealing with linear approximations by the differential. It turns out that the circumference of the enlarged band is 2*Pi ft greater than the original band.

(An alternate version of this has the circumference of the band increased by one foot, with the radius then being increased by 0.16 ft.)

The addendum to the problem then asked how high would the enlarged band be over the surface of the earth if it were lifted at one point and drawn as tight as possible around the equator. At first, I didn't know what to think. Would the height be some surprisingly large number? And how would one go about calculating this height.

It turns out that the enlarged and lifted band would be some 616.67 feet above the surface of the earth! This is significantly larger than the increase in the diameter of the original band. So, the result is a surprise, at least to me.

This is the kind of amusement that retirement affords. I heartily recommend both the amusement and the retirement. The supporting calculations can be found in the attached worksheet:

I am pleased to announce that we have just released a significant update to Maple T.A. 2016, our online assessment system.

Maple T.A. 2016.1 includes a wide range of features and improvements that have been requested by customers, including new options for questions and assignments, improved content management, and enhanced integration with course management systems. It also includes a substantial number of small enhancements and corrections across all areas of the product, providing improved responsiveness, more efficient load handling, and smoother workflow for instructors and students.

For more information, visit What’s New in Maple T.A.

Jonny Zivku
Product Manager, Online Education Products

Everything is simple, until you go underwater – This is what the University of Waterloo Submarine Racing team, or in short ‘WatSub’ coined as their motto. Never mind learning to scuba dive, and dealing with such things as rust, this newly formed team would have to compete against university teams with a decade or more of experience.

But that did not deter the team, and they started work on Ontario’s first submarine racing project. The team approached Maplesoft to be a sponsor and we are proud to have supported this ingenious venture. The team has used Maplesoft technology in the design and testing of the submarine.

“Maple has been our go-to calculations and analysis tool throughout the development of Amy (2015-2016 season), and we will continue using it throughout the development of Bolt (2016-2017 season),” said Gonzalo Espinoza Graham, President of the WatSub Team. “Its familiar interface and computing environment allowed us to set design benchmark targets from early on the design process and follow through with them on the later stage.”

What started as an engineering project in December 2014, becoming officially the first submarine racing team in Ontario. The team soon grew to over 130 general members and a tight core-team, who were eager to tackle new challenges.  The team resides inside the Sedra Student Design Centre, University of Waterloo’s state of the art facility that houses over 25 student teams, the largest of its kind in North America.  

WatSub made its first appearance on the European International Submarine Races (eISR) back in July 2016, with its 1st submarine ‘Amy’, where a single scuba diver piloted the submarine and propelled it through an unforgiving winding course marked by obstacles and turns 10 meters underwater. The team has since then participated in other competitions and is constantly improving the design and performance of the submarine, learning from each competition they participate in.  Next year Amy will participate in the 14th edition of the eISR international competition. “I think the greatest thing we learned is never to give up,” said Ana Krstanovic, a third-year political science student who manages communications for the team. “We’re more motivated now than ever.”


Ojaswi Tagore, Gonzalo Espinoza Graham, and Janna Henzl represented WatSub at the European International Submarine Race in Gosport, UK.


Another example of an innovative project that Maplesoft supported in 2016 is Waterloop: The Canadian SpaceX Hyperloop Competition Team, Canada's only SpaceX Hyperloop Pod Competition team. This project, which could change the way we travel in the future, is driven by a group of dedicated University of Waterloo students who have taken on the challenge to design and build a functional prototype Hyperloop pod. They will test it on a one-mile test track in Hawthorne, California in January 2017, pitting it against 22 of the 1200+ teams who originally entered the competition.

The Hyperloop is a conceptual next generation high-speed transit system that will take commuters between cities at speeds over 1,000 km/h. The technology will differ from previous rail transit by having pods ride on a cushion of air in a reduced pressure tube in order to reach greater speeds with a smoother ride, and is powered entirely by renewable energy.

 The Hyperloop Pod Competition was launched by Elon Musk, the billionaire engineer and founder of SpaceX and Tesla Motors.  The competition is separated into 3 rounds. The first one was held in late December, where selected teams sent in their initial designs to be reviewed. From there, 180 teams were chosen to compete at Texas A&M University. Each team set up a booth and a panel of judges critiqued them and chose 31 teams to move onto the final, build and test stage.

Waterloop Goose I

Waterloop Goose X

The GOOSE I is Waterloop’s half-scale, functional prototype vehicle pod, which will be the one in the competition.  The GOOSE X pod is a conceptual full size Hyperloop vehicle inspired by the prototype they are building. The full size pod will have a capacity of 26 passengers per pod.

"Our prototype has been designed to be as simple and economical as possible, while still performing all necessary functions for the full size Hyperloop. If it is successful, it has the potential to revolutionize the transit industry in the same manner the train and airplane has before it," said Montgomery de Luna, architectural design lead for Waterloop. “We would like to thank Maplesoft for their generous support.  Without sponsors like Maplesoft supporting our vision and encouraging innovative student projects, we wouldn’t be able to achieve our goal.”

Revolutionizing the transportation industry isn’t easy and is at times frustrating and time consuming for these teams, but having the best tools and resources will ensure that the teams have a good chance at excelling in competitions and creating innovative models that could change our future.

The Joint Mathematics Meetings are taking place this week (January 4 – 7) in Atlanta, Georgia, U.S.A. This will be the 100th annual winter meeting of the Mathematical Association of America (MAA) and the 123nd annual meeting of the American Mathematical Society (AMS).

Maplesoft will be exhibiting at booth #118 as well as in the networking area. Please stop by our booth or the networking area to chat with me and other members of the Maplesoft team, as well as to pick up some free Maplesoft swag or win some prizes.

There are also several interesting Maple-related talks and events happening this week:


Teaching Cryptology to Increase Interest in Mathematics for Students Majoring in Non-Technical Disciplines and High School Students

Wednesday, January 4, 0820, L401 & L402, Lobby Level, Marriott Marquis

Neil Sigmon, Radford University


Enigma: A Combinatorial Analysis and Maple Simulator

Wednesday, January 4, 0900, L401 & L402, Lobby Level, Marriott Marquis

Rick Klima, Appalachian State University


MYMathApps Calculus - Building on Maplets for Calculus

Thursday, January 5, 0800, Courtland, Conference Level, Hyatt Regency

Philip B. Yasskin, Texas A&M University 
Douglas B. Meade, University of South Carolina 
Andrew Crenwelge, Texas A&M University


Maple Software Technology as a Stimulant Tool for Dynamic Interactive Calculus Teaching and Learning

Thursday, January 5, 1000, Courtland, Conference Level, Hyatt Regency

Lina Wu, Borough of Manhattan Community College-The City University of New York 


Collaborative Research: Maplets for Calculus

Thursday, January 5, 1400, Marquis Ballroom, Marquis Level, Marriott Marquis

Philip Yasskin, Texas A&M University 
Douglas Meade, U of South Carolina


Digital Graphic Calculus Art Design in Maple Software

Thursday, January 5, 1420, International 7, International Level, Marriott Marquis

Lina Wu, Borough of Manhattan Community College-The City University of New York 


Maplesoft will also be hosting a catered reception and brief presentation on Teaching STEM Online: Challenges and Solutions, Thursday January 5th, from 6:00pm – 7:30pm, at the Hyatt Regency, Hanover AB, on the exhibitor level. Please RSVP at or at Maplesoft booth #118.


If you are attending the Joint Math meetings this week and plan on presenting anything on Maple, please feel free to let me know and I'll update this list accordingly.

See you in Atlanta!


Maple Product Manager

At 3:00 PM EST on Thursday, December 15, Maplesoft hosted a momentous hour in my life, my "retirement party" ending my career at Maplesoft. It was a day I had planned some four years ago when I dropped to a lighter schedule, and a day my wife has been awaiting for six years.

Jim Cooper, CEO at Maplesoft, presented a very brief sketch of some milestones in my life, including my high school graduation in 1958, BA in 1963, MS in 1966, PhD in 1970, jobs at the University of Nebraska-Lincoln, Memorial University of Newfoundland, and the Rose-Hulman Institute of Technology. There was a picture of me taken from my high school graduation yearbook. There was a cake. There were kind words about my contributions to Maple, including "Clickable Calculus," the term and its meaning.

I was handed the microphone - I knew what I wanted to say. My wife was present in the gathering. I pointed to her and said that all the congratulations should go to her who had waited so patiently for my retirement for six years. I thanked Maplesoft and all its employees for nearly 14 of the best years of my life, for I have thoroughly enjoyed my return to Canada and my work (more like play) at Maplesoft. 

It's been a great opportunity to be part of the Maple experience, and now it's time for new ones. There'll be more woodworking in my basement woodshop where I make mostly noise and sawdust, some extra travel, more exercise and fresh air, long-delayed household projects, and whatever else my mate of 49 years asks.

But the best part of all is that I'll still have a connection to Maplesoft - I'll continue doing two webinars a month, will maintain and update much of the content I've created for Maple while at Maplesoft, and contribute additional content of relevance to the Maple community. 

A population p(t) governed by the logistic equation with a constant rate of harvesting satisfies the initial value problem diff(p(t), t) = (2/5)*p(t)*(1-(1/100)*p(t))-h, p(0) = a. This model is typically analyzed by setting the derivative equal to zero and finding the two equilibrium solutions p = 50+`&+-`(5*sqrt(100-10*h)). A sketch of solutions p(t) for different values of a suggests that the larger equilibrium is stable; the smaller, unstable.


When a is less that the unstable equilibrium, p(t) becomes zero at a time t[e], and the population becomes extinct. If p(t) is not interpreted as pertaining to a population, its graph exists beyond t[e], and actually has a vertical asymptote between the two branches of its graph.


In the worksheet "Logistic Model with Harvesting", two questions are investigated, namely,


  1. How does the location of this vertical asymptote depend on on a and h?
  2. How does the extinction time t[e], the time at which p(t) = 0, depend on a and h?

To answer the second question, an explicit solution p = p(a, h, t), readily provided by Maple, is set equal to zero and solved for t[e] = t[e](a, h). It turns out to be difficult both to graph the surface t[e](a, h) and to obtain a contour map of the level sets of this function. Instead, we solve for a = a(t[e], h) and obtain a graph of a(h) with t[e] as a slider-controlled parameter.


To answer the first question, the explicit solution, which has the form alpha*tan(phi(a, h, t))*beta(h)+50, exhibits its vertical asymptote when phi(a, h, t) = -(1/2)*Pi. Solving this equation for t[a] = t[a](a, h) gives the time at which the vertical asymptote is located, a function that is as difficult to graph as t[e]. Again the remedy is to solve for, and graph, a = a(h), with t[a] as a slider-controlled parameter.


Download the worksheet:

Last week Michael Pisapia, Maplesoft European VP, attended the opening reception of Mathematics: The Winton Gallery at the Science Museum in London. Ahead of being open to the public on 8th December, contributors and donors were invited to take a look behind the scenes of the new gallery, which explores how mathematicians, their tools and ideas have helped to shape the modern world over the last four hundred years.

The gallery is a spectacular space, designed by the world-renowned Zaha Hadid Architects, housing over a hundred artefacts of mathematical origin or significance. It is divided up into disciplines ranging from navigation to risk assessment, and gambling to architecture. Inspired by the Handley Page aircraft, the largest object on display, and suspended as the centrepiece, the gallery is laid out using principles of mathematics and physics. It follows the lines of airflow around it in a stunning display of imagined aerodynamics, brought to life using light and sculpture. You can learn more about its design in this video.

Guests at the reception enjoyed a specially commissioned piece of music from the Royal College of Music titled ‘Gugnunc’, named after the aircraft and inspired by the rhythms of Morse code and mathematical and mechanical processes, and performed at the centre of the gallery.

Of course any exhibit celebrating all things maths is of great interest to us here at Maplesoft, but this one especially so, since Mathematics: The Winton Gallery showcases the earliest available version of Maple.

A copy of Maple V, from 1997, sits in ‘The Power of Computers’ section of the Winton Gallery, in an exhibit which tells the story of the significant role played by mathematical software in improving the quality of mathematics education and research. Other objects in the section include a Calculating Machine from the Scientific Service circa 1939, a PDP-8 minicomputer from the 1960s, and part of Charles Babbage’s mid-19th century analytical engine, intended as a high-powered mathematical calculator.

As many of you will remember, Maple V was a major milestone in the history of Maple, providing unparalleled interactivity, powerful symbolics and creative visualization in mathematical computation and modeling. For a walk down memory lane, check out Maple V: The Future of Mathematics (ca. 1994) on YouTube.

Seeing this copy of Maple finally in place in the exhibit marks the end of a long journey – and not just in the miles it travelled to arrive at the museum from its home in Canada. When we were first approached by the Science Museum for a donation of Maple, we launched a hunt to find not just the right copy of Maple with its box and manuals, but also artefacts that showcased the origin and history of Maple. It was a journey down memory lane for the inventors of Maple as well as the first few employees as they dug out old correspondences, photos, posters and other memorabilia that could be showcased. Today they can be proud of their contribution to this display at the Science Museum. 

Although the case of historic software packages is visually less impressive than many of the other items in the gallery, it certainly attracted plenty of attention as guests made their way in for the first time. 

For fans of Maple V - and there are many - it’s reassuring that the Science Museum are now entrusted with preserving not only the iconic packaging, but with telling the story of Maple’s history and marking its place in the evolution of mathematics and technology.

To learn more about Mathematics: The Winton Gallery, its highlights and architecture, visit

To see the timeline of Maple’s evolution over the years, visit:

This MaplePrimes guest blog post is from Dr. James Smith, an Assistant Lecturer in the Electrical Engineering and Computer Science Department of York University’s Lassonde School of Engineering. His team has been working with Maplesim to improve the design of assistive devices.

As we go through our everyday lives, we rarely give much thought to the complex motions and movements our bodies go through on a regular basis. Motions and movements that seem so simple on the surface require more strength and coordination to execute than we realize. And these are made far more difficult as we age or when our health is in decline. So what can be done to assist us with these functions?

In recent years, my research team and I have been working on developing more practical and streamlined devices to assist humans with everyday movements, such as standing and sitting. Our objective was to determine if energy could be regenerated in prosthetic devices during these movements, similar to the way in which hybrid electric vehicles recover waste heat from braking and convert it into useable energy.

People use – and potentially generate – more energy than they realize in carrying out common, everyday movements. Our research for this project focused on the leg joints, and investigated which of the three joints (ankle, knee or hip) was able to regenerate the most energy throughout a sitting or standing motion. We were confident that determining this would lead to the development of more efficient locomotive devices for people suffering from diseases or disabilities affecting the muscles around these joints.

In order to identify the point at which regenerative power is at its peak, we determined that MapleSim was the best tool to help us gather the desired data. We took biomechanical data from actual human trials and applied them to a robotic model that mimics human movements when transitioning between sitting and standing positions. We created models to measure unique movements and energy consumption at each joint throughout the identified movements to determine where the greatest regeneration occurred.

To successfully carry out our research, it was essential that we were able to model the complex chemical reactions that occur within the battery needed to power the assistive device. It is a challenge finding this feature in many engineering software programs and MapleSim’s battery modeling library saved our team a great deal of time and effort during the process, as we were able to use an existing MapleSim model and simply make adjustments to fit our project.

Using MapleSim, we developed a simplified model of the human leg with a foot firmly planted on the ground, followed by a more complex model with a realistic human foot that could be raised off the ground. The first model was used to create a simplified model-based motion controller that was then applied to the second model. The human trials we conducted produced the necessary data for input into a multi-domain MapleSim model that was used to accurately simulate the necessary motions to properly analyze battery autonomy.

The findings that resulted from our research have useful and substantial applications for prostheses and orthoses designs. If one is able to determine the most efficient battery autonomy, operation of these assistive devices can be prolonged, and smaller, lighter batteries can be used to power them. Ultimately, our simulations and the resulting data create the possibility of more efficient devices that can reduce joint loads during standing to sitting processes, and vice versa.

1 2 3 4 5 6 7 Last Page 1 of 19