Personal Stories

Stories about how you have used Maple, MapleSim and Math in your life or work.

   It’s that time of year again for the University of Waterloo’s Submarine Racing Team – international competitions for their WatSub are set to soon begin. With a new submarine design in place, they’re getting ready to suit up, dive in, and race against university teams from around the world.


   The WatSub team has come a long way from its roots in a 2014 engineering project. Growing to over 100 members, students have designed and redesigned their submarine in efforts to shave time off their race numbers while maintaining the required safety and performance standards. Their submarine – “Bolt,” as it’s named – was officially unveiled for the 2017 season on Thursday, June 1st.



   As the WatSub team says, "Everything is simple, until you go underwater."



    Designing a working submarine is no easy task, and that’s before you even think about all the details involved. Bolt needs to accommodate a pilot, be transported around the world, and cut through the water with speed, to name a few of the requirements if the WatSub team is to be a serious competitor.


    To help squeeze even more performance out of their design, the team has been using Maple to fine tune and optimize some of their most important structural components. At Maplesoft, we’ve been excited to maintain our sponsorship of the WatSub team as they continue to find new ways to push Bolt’s performance even further.



   The 2017 design unveiling on June 1st. After adding decals and final touches, Bolt will soon be ready to race.


   This year, the WatSub team has given their sub a whole new design, machining new body parts, optimizing the weight distribution of their gearbox, and installing a redesigned propeller system. Using Maple, they could go deep into design trade-offs early, and come away knowing the optimal gearbox design for their submarine.


   In just over a month, the WatSub team will take Bolt across the pond and compete in the European International Submarine Races (eISR). Many teams competing have been in existence for well over a decade, but the leaps and strides taken by the WatSub team have made them a serious competitor for this year.

  Best of luck to the WatSub team and their submarine, Bolt – we’re all rooting for you!

Meta Keijzer-de Ruijter is a Project Manager for Digital Testing at TU Delft, an institution that is at the forefront of the digital revolution in academic institutions. Meta has been using Maple T.A. for years, and offered to provide her insight on the role that automated testing & assessment played in improving student pass rates at TU Delft.


Modern technology is transforming many aspects of the world we live in, including education. At TU Delft in the Netherlands, we have taken a leadership role in transforming learning through the use of technology. Our ambition is to get to a point where we are offering fully digitalized degree programs and we believe digital testing and assessment can play an important role in this process.


A few years ago we launched a project with the goal of using digital testing to drastically improve the pass rates in our programs. Digital testing helps organize testing more efficiently for a larger number of students, addressing issues of overcrowded classrooms, and high teaching workloads. To better facilitate this transformation, we decided to adopt Maple T.A., the online testing and assessment suite from Maplesoft. Maple T.A. also provides anytime/anywhere testing, allowing students to take tests digitally, even from remote locations.


Regular and repeated testing produces the best learning results because progressive monitoring offers instructors the possibility of making adjustments throughout the course. The randomization feature in Maple T.A. provides each student with an individual set of problems, reducing the likelihood that answers will be copied. Though Maple T.A. is specialized in mathematics, it also supports more common question types like multiple choice, multiple selection, fill-in-the-blanks and hot spot. Maple T.A.’s question randomization, possibilities for multiple response fields per question and question workflow (adaptive questions) are superior to other options. By offering regular homework assignments and analyzing the results, we gain better insight into the progress of students and the topics that students perceive as difficult. Our lecturers can use this insight to decide whether to repeat particular material or to offer it in another manner. In many courses, preparing and reviewing practice tests comprise an important, yet time-consuming task for lecturers, and Maple T.A. alleviates that burden.


At TU Delft, we require all first-year students to take a math entry test using Maple T.A in order to assess the required level of math. Since the assessment of the student’s ability is so heavily dependent upon qualifying tests, it is extremely important for the test to be completed under controlled conditions. In Maple T.A., it is easy to generate multiple versions of the test questions without increasing the burden of review, as the tests are graded immediately. Students that fail the entry test are offered a remedial course in which they receive explanations and complete exercises, under the supervision of student assistants. The use of Maple T.A. facilitates this process without placing additional burden on the teacher. When the practice tests and the associated feedback are placed in a shared item bank in Maple T.A., teachers are able to offer additional practice materials to students with little effort. It makes it considerably easier on us as teachers to be able to use a variety of question types, thus creating a varied test.


Each semester, TU Delft offers an English placement test that is taken by approximately 200 students and 50 PhD candidates, in which students are required to formulate their reasons for their program choices or research topics. It used to take four lecturers working full-time for two days to mark the tests and report the results to participants in a timely manner. The digitization of this test has saved us considerable time. The hundred fill-in-the-blank questions are now marked automatically, and we no longer have to decipher handwriting for the open questions!


TU Delft is not alone in its emphasis on digital testing; it has a prominent position on the agendas of many institutions in Europe and elsewhere. These institutions are intensively involved in improving, expanding and advocating the positive results from digital testing and digital learning experiences. Online education solutions like Maple T.A. are playing a key role in improving the quality of digital offerings at institutions.


I am pleased to announce the public release of Möbius, the online courseware environment that focuses on science, technology, engineering, and mathematics education. After months of extensive pilot testing at select leading academic institutions around the world, Möbius is now available to everyone for your online learning needs.

We are very excited about Möbius. As you can imagine, many of us here at Maplesoft have backgrounds in STEM fields, and we are truly excited to be working on a project that gives students a hands-on approach to learning math-based content.  You can’t learn math (or science, or engineering, or …) just by reading about it or listening to someone talk about it. You have to do it, and that’s what Möbius lets students do, online, with instant feedback.  Not only can students explore concepts interactively, but they can find out immediately what they’ve understood and what they haven’t - not a few hours after the lecture as they are reviewing their notes, not two weeks later when they get their assignments back, but while they are in the middle of learning the lesson.

During its pilot phase, Möbius was used by multiple institutions around the world for a variety of projects, such as preparing students in advance for their first year math and engineering courses, and for complete online courses.  Over one hundred thousand students have already used Möbius, and the experiences of these students and their instructors has fed back into the development process, resulting in this public release.  You can read about the experiences of the University of Waterloo, the University of Birmingham, and the Perimeter Institute for Theoretical Physics on our web site.

We are also happy to announce that Maplesoft has partnered with the University of Waterloo, one of the largest institutions in the world for STEM education, to provide institutions and professors with rich online courses and materials that enable students to learn by doing.  These Möbius courses are created by experts at the University of Waterloo for use by their own students and for their outreach programs, and will be made available to other Möbius users.  Course materials range from late high school to the graduate level, with initial offerings available soon and many more to follow.

Visit the Möbius section of our web site for lots more information, including videos, whitepapers, case studies, and upcoming user summits.


I have proposed a SE site for maple.

This will help to put maple on SE.

Please follow this site.


We have moved to the next phase Commitment. Come and join us.

Ilias Kotsireas is a Professor and Director of the CARGO lab at Wilfrid Laurier University, in Waterloo Ontario.

Throughout my career as a teacher, I’ve had the opportunity to work with students from around the globe. I’ve been able to work with students in other countries, immersing myself in their culture and learning environment. This has allowed me to experience the differences in educational delivery first hand, and to assess how education is viewed in other parts of the world.

On more than one occasion, I’ve visited the city of Guangzhou, China, to teach summer and winter school courses, beginning in 2007 and most recently in 2015 and 2016. During this time, I have witnessed tremendous growth in the development of Chinese Universities, as well as Chinese culture as a whole.  For example, the two largest supercomputers in the world - according to the website  - are located in China.  Another indication of the scale of this extraordinary growth is the fact that China currently has more than 2,000 universities, government research facilities and laboratories.  Furthermore, China Central Television (CCTV) programs report that China is planning the creation of an additional 10 mega-cities, each comparable in size to Shanghai.

Ilias Kotserias stands with students and fellow professors at South China Normal University (SCNU) in Guangzhou, China.


Summer and winter school courses in China are incredibly intensive. Such courses can run for one or two weeks and include two lectures per day, one on the morning and one in the afternoon. A tremendous amount of material must be covered in a short amount of time to accommodate the entire course.

Overall, my experiences have shown that students in China are very enthusiastic about education. They are heavily engaged with the learning materials and often spend time with professors at the conclusion of a lecture to converse and ask questions about what they have just learned. Class sizes are significantly smaller and there is a lot of one-on-one time with students. Students in China take their studies very seriously; they are very focused and motivated to do well in their studies, and they bring a great deal of knowledge and curiosity to the classroom.  Professors cannot gloss over material or deliver a scripted lecture. Students hold professors accountable, and expect them to be knowledgeable and have a strong understanding of the material. They have a strong desire to learn and gain experiences and relevant skills that they can carry forward with them in their educational and professional careers.

Maplesoft graciously offered short term licenses to my students in China, so they could use Maple in the mathematics courses I was teaching. Using Maple allowed me to continue using an experimental approach to teaching that I use for my students back home in Canada.  This approach encourages students to start with simple experimentation that may also contain visual components, develop a plausible conjecture and subsequently attempt to solve it step by step.  This promotes a “learn by doing” paradigm that promotes active learning and helps students better understand key mathematical concepts. In a delightful episode, one Chinese student told me “I don’t understand your English accent,” but in teaching with Maple there are no accents I need to worry about!  Chinese students are inquisitive, respectful and conscientious; it is an absolutely gratifying experience working with them. 

I was first introduced to Maple when I was completing my Masters and Ph.D in France in the late 1990s. When I began teaching in 2001, I introduced Maple into my classrooms to improve my students’ ability to learn the materials, understand difficult concepts, and to create more sustainable engagement with them. Initially, it took some work to convince them to use Maple, as it was not among the conventional learning methods they were used to. Eventually students came to embrace Maple as a learning tool and I was able to use visual and interactive examples to engage them. With Maple, experimentation is at your fingertips and it allows me to incorporate an example-driven learning experience for my students.

It was a valuable experience to work with students from another culture and be able to engage them using the same method I use to engage my students back home. Maple is not only a powerful and convenient teaching tool, but it can also assist in bridging cultural gaps and creating a learning experience that is uniform across the globe.

At 3:00 PM EST on Thursday, December 15, Maplesoft hosted a momentous hour in my life, my "retirement party" ending my career at Maplesoft. It was a day I had planned some four years ago when I dropped to a lighter schedule, and a day my wife has been awaiting for six years.

Jim Cooper, CEO at Maplesoft, presented a very brief sketch of some milestones in my life, including my high school graduation in 1958, BA in 1963, MS in 1966, PhD in 1970, jobs at the University of Nebraska-Lincoln, Memorial University of Newfoundland, and the Rose-Hulman Institute of Technology. There was a picture of me taken from my high school graduation yearbook. There was a cake. There were kind words about my contributions to Maple, including "Clickable Calculus," the term and its meaning.

I was handed the microphone - I knew what I wanted to say. My wife was present in the gathering. I pointed to her and said that all the congratulations should go to her who had waited so patiently for my retirement for six years. I thanked Maplesoft and all its employees for nearly 14 of the best years of my life, for I have thoroughly enjoyed my return to Canada and my work (more like play) at Maplesoft. 

It's been a great opportunity to be part of the Maple experience, and now it's time for new ones. There'll be more woodworking in my basement woodshop where I make mostly noise and sawdust, some extra travel, more exercise and fresh air, long-delayed household projects, and whatever else my mate of 49 years asks.

But the best part of all is that I'll still have a connection to Maplesoft - I'll continue doing two webinars a month, will maintain and update much of the content I've created for Maple while at Maplesoft, and contribute additional content of relevance to the Maple community. 

Last week Michael Pisapia, Maplesoft European VP, attended the opening reception of Mathematics: The Winton Gallery at the Science Museum in London. Ahead of being open to the public on 8th December, contributors and donors were invited to take a look behind the scenes of the new gallery, which explores how mathematicians, their tools and ideas have helped to shape the modern world over the last four hundred years.

The gallery is a spectacular space, designed by the world-renowned Zaha Hadid Architects, housing over a hundred artefacts of mathematical origin or significance. It is divided up into disciplines ranging from navigation to risk assessment, and gambling to architecture. Inspired by the Handley Page aircraft, the largest object on display, and suspended as the centrepiece, the gallery is laid out using principles of mathematics and physics. It follows the lines of airflow around it in a stunning display of imagined aerodynamics, brought to life using light and sculpture. You can learn more about its design in this video.

Guests at the reception enjoyed a specially commissioned piece of music from the Royal College of Music titled ‘Gugnunc’, named after the aircraft and inspired by the rhythms of Morse code and mathematical and mechanical processes, and performed at the centre of the gallery.

Of course any exhibit celebrating all things maths is of great interest to us here at Maplesoft, but this one especially so, since Mathematics: The Winton Gallery showcases the earliest available version of Maple.

A copy of Maple V, from 1997, sits in ‘The Power of Computers’ section of the Winton Gallery, in an exhibit which tells the story of the significant role played by mathematical software in improving the quality of mathematics education and research. Other objects in the section include a Calculating Machine from the Scientific Service circa 1939, a PDP-8 minicomputer from the 1960s, and part of Charles Babbage’s mid-19th century analytical engine, intended as a high-powered mathematical calculator.

As many of you will remember, Maple V was a major milestone in the history of Maple, providing unparalleled interactivity, powerful symbolics and creative visualization in mathematical computation and modeling. For a walk down memory lane, check out Maple V: The Future of Mathematics (ca. 1994) on YouTube.

Seeing this copy of Maple finally in place in the exhibit marks the end of a long journey – and not just in the miles it travelled to arrive at the museum from its home in Canada. When we were first approached by the Science Museum for a donation of Maple, we launched a hunt to find not just the right copy of Maple with its box and manuals, but also artefacts that showcased the origin and history of Maple. It was a journey down memory lane for the inventors of Maple as well as the first few employees as they dug out old correspondences, photos, posters and other memorabilia that could be showcased. Today they can be proud of their contribution to this display at the Science Museum. 

Although the case of historic software packages is visually less impressive than many of the other items in the gallery, it certainly attracted plenty of attention as guests made their way in for the first time. 

For fans of Maple V - and there are many - it’s reassuring that the Science Museum are now entrusted with preserving not only the iconic packaging, but with telling the story of Maple’s history and marking its place in the evolution of mathematics and technology.

To learn more about Mathematics: The Winton Gallery, its highlights and architecture, visit

To see the timeline of Maple’s evolution over the years, visit:

On some platforms, my editor of choice has become the aptly named Sublime Text. Unfortunately, it does not seem to have built in syntax highlighting for the Maple programming language and so I set out to write some.  In the end, I wrote enough highlighting to keep me sane when looking at Maple source, but it could use a lot more work.  So in case anyone is interested I've put what I have in a Github repository: SublimeTextMaple

If you use Sublime Text, please download it and add your own enhacements and share in turn.

This MaplePrimes guest blog post is from Ian VanderBurgh, the Director of the Center for Education in Mathematics and Computing (CEMC) and a Lecturer in the Faculty of Mathematics at the University of Waterloo. He has been overseeing a project to develop online, interactive mathematics curriculum for high school students, and has been integral in the development of Möbius, Maplesoft's online courseware environment.

Start with one part interest in online education, add one part increased functionality for developing online content, and mix with one part increased focus in the media and elsewhere on mathematics education.  What does this produce?  The perfect time to create high-quality online resources to support learning and teaching in mathematics.

The Centre for Education in Mathematics and Computing (CEMC) at the University of Waterloo aims to increase interest, enjoyment, confidence, and ability in mathematics and computer science among learners and educators in Canada and internationally.  For more than fifty years, we have been working with teachers to support the important work that they do in the classroom.  When online courses rose to prominence several years ago, we felt that this gave us the perfect opportunity to create materials to better support the curriculum being taught across Canada and around the world.

The content for what we now call “Phase One” was planned: Advanced Functions (Pre-Calculus) as well as Calculus & Vectors.  These materials would support the education of students in their final year of secondary school, and also provide materials to reinforce concepts for students in STEM programs at the post-secondary level.

After deciding on the content, we needed a platform.  We knew that we needed one with exceptional mathematical capabilities.  Thus, we have been working hand-in-hand with Maplesoft ever since.

With content and platform established, the style began to take shape.  It is based around what one of my colleagues calls “the five Es”: Exposition (onscreen text with synchronized audio), Experimentation (worksheets where users can manipulate mathematical objects), Evaluation (re-generating quiz questions), Exercises (with answers and solutions), and Enrichment (application and extension problems and solutions).  Have a look at the materials and watch a video about the courseware.  After less than two years of “public life”, Phase One has received more than 2 million page views and usage is accelerating.

But why stop there?  Through the development of Phase One, all of the stakeholders realized that, while what we created was great, we needed better and more efficient development tools.  Thus, Möbius was born.  (In the meantime, the CEMC separately launched Phase Two of this ambitious initiative: resources in computer science to support the teaching and learning of programming concepts.)

Now, using the full capabilities of Möbius, we are developing Phase Three, a parallel set of resources to Phase One that will support mathematics at the Grade 7/8 level.  Why Grade 7/8?  We believe that these are very important years in education, that it is vital to future success in STEM disciplines that students flourish in these years, and that we should do whatever we can to support this.

What comes next?  Time will tell.  But, the CEMC will be there supporting mathematics and STEM education.  STEM disciplines will drive almost everything in the twenty-first century, and we have an obligation to do whatever we can to give young people every possible chance for success.

The 196 algorithm goes like this.  Start with an integer.  Reverse the digits.  Add the reversed number to the integer.  For most numbers, this eventually leads to a palendrome.  That is to say the number is equal to the reversed number.  I wrote a little Maple procedure to explore 196, the smallest number that will probrably never become a palendrome when put into the algorithm.


Let me know if you like my code.




The Saturday edition of our local newspaper (Waterloo Region Record) carries, as part of The PUZZLE Corner column, a weekly puzzle "STICKELERS" by Terry Stickels. Back on December 13, 2014, the puzzle was:

What number comes next?

1   4   18   96   600   4320   ?

The solution given was the number 35280, obtained by setting k = 1 in the general term k⋅k!.

On September 5, 2015, the column contained the puzzle:

What number comes next?

2  3  3  5  10  13  39  43  172  177  ?

The proposed solution was the number 885, obtained as a10 from the recursion

where a0 =2.

As a youngster, one of my uncles delighted in teasing me with a similar question for the sequence 36, 9, 50, 55, 62, 71, 79, 18, 20. Ignoring the fact that there is a missing entry between 9 and 50, the next member of the sequence is "Bay Parkway," which is what 22nd Avenue is actually called in the Brooklyn neighborhood of my youth. These are subway stops on what was then called the West End line of the subway that went out to Stillwell Avenue in Coney Island.

Armed with the skepticism inspired by this provincial chestnut, I looked at both of these puzzles with the attitude that the "next number" could be anything I chose it to be. After all, a sequence is a mapping from the (nonnegative) integers to the reals, and unless the mapping is completely specified, the function values are not well defined.

Indeed, for the first puzzle, the polynomial f(x) interpolating the points

(0, 1), (1, 4), (2, 18), (3, 93), (4, 600), (5, 4320)

reproduces the first six members of the given sequence, and gives 18593 (not 35280) for f(7). In other words, the pattern k⋅k! is not a unique representation of the sequence, given just the first six members. The worksheet NextNumber derives the interpolating polynomial f and establishes that f(n) is an integer for every nonzero integer n.

Likewise, for the second puzzle, the polynomial g(x) interpolating the points

(1, 2) ,(2, 3) ,(3, 3) ,(4, 5) ,(5, 10) ,(6, 13) ,(7, 39) ,(8, 43), (9, 172) ,(10, 177)

reproduces the first ten members of the given sequence, and gives -7331(not 885) for g(11). Once again, the pattern proposed as the "solution" is not unique, given that the worksheet NextNumber contains both g(x) and a proof that for integer n, all values of g(n) are integers.

The upshot of these observations is that without some guarantee of uniqueness, questions like "what is the next number" are meaningless. It would be far better to pose such challenges with the words "Find a pattern for the given members of the following sequence" and warn that the function capturing that pattern might not be unique.

I leave it to the interested reader to prove or disprove the following conjecture: Interpolate the first n terms of either sequence. The interpolating polynomial p will reproduce these n terms, but for k>n, p(k) will differ from the corresponding member of the sequence determined by the stated patterns. (Results of limited numerical experiments are consistent with the truth of this conjecture.)


Bruce Jenkins is President of Ora Research, an engineering research and advisory service. Maplesoft commissioned him to examine how systems-driven engineering practices are being integrated into the early stages of product development, the results of which are available in a free whitepaper entitled System-Level Physical Modeling and Simulation. In this series of blog posts, Mr. Jenkins discusses the results of his research.

This is the third entry in the series.

My last post, System-level physical modeling and simulation: Adoption drivers vs. adoption constraints, described my firm’s research project to investigate the contemporary state of adoption and application of systems modeling software technologies, and their attendant methods and work processes, in the engineering design of off-highway equipment and mining machinery.

In this project, I interviewed some half-dozen expert practitioners at leading manufacturers, including both engineering management and senior discipline leads, to identify key technological factors as well as business and competitive issues driving adoption and use of systems modeling at current levels.

After identifying present-day adoption drivers as well as current constraints on adoption, finally I sought to learn practitioners’ visions, strategies and best practices for accelerating and institutionalizing the implementation and usage of systems modeling tools and practices in their organizations.

I was strongly encouraged to find a wealth of avenues and opportunities for exploiting enterprise business drivers, current industry disruptions, and related internal realignments and change-management initiatives to help drive introduction—or proliferation—of these technologies and their associated new ways of working into engineering organizations:

  • Systems modeling essential to compete by creating differentiated products
  • Mechatronics revolution in off-highway equipment
  • Industry downturns and disruptions create opportunities for disruptive innovation
    • Opportunities to leverage change in underlying industry competitive dynamics
    • Mining industry down-cycle creates opportunity to innovate, find new ways of working
    • Some manufacturers are using current down-cycle in mining industry to change their product innovation strategy
  • Strategies of manufacturers pursuing disruptive innovation
    • Best odds are in companies with deep culture of continually inculcating new skills into their people, and rethinking methods and work processes
    • Some managements willing to take radical corporate measures to replace old-thinking engineering staff with “systems thinkers”
    • Downsizing in off-highway equipment manufacturers may push them to seek more systems-level value-add from their component suppliers
  • New technology opportunities inside manufacturers ready to move more deeply into systems modeling
    • Opportunities in new/emerging industries/companies without legacy investments in systems modeling tools and libraries
    • Best practice for introducing systems modeling: start with work process, then bring in software
    • Capitalizing on engineering’s leeway and autonomy in specifying systems modeling software compared with enterprise-standard CAD/PLM tools
  • Systems modeling technology advances anticipated by practitioner advocates
    • Improving software integration, interoperability, data interchange
    • Improving co-simulation across domain tools
    • Better, more complete FMI (Functional Mock-up Interface) implementation/compliance
    • Higher-fidelity versions of FMI or similar

The white paper detailing the findings of this research is intended to offer guidance and advice for implementing change, as well as documentation to help convince colleagues, management and partners that new ways of working exist, and that the software technologies to support and enable them are available, accessible, and delivering payback and business advantage to forward-thinking engineering organizations today.

My hope is that this research finds utility as a practical, actionable aid for engineers and engineering management in helping their organizations to adopt and implement—or to strengthen and deepen—a simulation-led, systems-driven approach to product development.

You can download the full white paper reporting our findings here.

Bruce Jenkins, Ora Research

most effective built in operator code award goes to ppl that wrote the code for the union and intercect set operations for maple. Very important simple example below of  one of its applications.


When i work with algorithms, probably one of my most primary ports of enquiry (figuratively jeez skynet)  is to set up and if statement triggered to terminate the loop once the operations performed for any further cycles is INDEMPOTENT. this doesnt always mean your output is convergent in every case but it allows you to minimize the amount of time the cpu needs to collect data( ie the point at which it would produce that same set as it did in the last most loop)



Y := proc (X) local N, S1, `&Sopf;`; if X <> `union`(X, S1[N]) then N := (rand(1 .. NrANGE))(); S1[N] := {K[1](4+N), K[1](5+N), K[1](6+N), K[1](7+N), K[1](8+N), K[1](9+N), K[1](10+N), K[1](11+N), K[1](12+N), K[1](13+N), K[1](14+N), K[1](15+N)}; `&Sopf;` := `union`(X, S1[N]) else  end if end proc

proc (X) local N, S1, `&Sopf;`; if X <> `union`(X, S1[N]) then N := (rand(1 .. NrANGE))(); S1[N] := {K[1](4+N), K[1](5+N), K[1](6+N), K[1](7+N), K[1](8+N), K[1](9+N), K[1](10+N), K[1](11+N), K[1](12+N), K[1](13+N), K[1](14+N), K[1](15+N)}; `&Sopf;` := `union`(X, S1[N]) else  end if end proc







1 2 3 4 5 6 7 Last Page 1 of 19