Maple 12 Questions and Posts

These are Posts and Questions associated with the product, Maple 12

How to create a hyperplane which perpendicular to groebner basis

tord := plex(x, y, z);
G := Basis([hello1, hello2, hello3], tord);
ns, rv := NormalSet(G, tord);
Error, (in Groebner:-NormalSet) The case of non-zero-dimensional varieties is not handled
is this error due to version of maple?
which version do not have this error?
 

A lemniscate is a polar curve of the form r^2=a^2*cos(2*theta) or r^2=a^2*sin(2*theta). I have just started using Maple and I wrote the following commands: 

> with(plots):
> polarplot(2*sqrt(cos(2*t)), axiscoordinates = cartesian, angularunit = radian, color = "Black");
 

But I am getting the following graph 

which is not satisfactory since some points are missing. I know that using the square root may have caused this, but I am not sure as to how should I resolve this issue. I used plus/minus symbol before the expression 2(cos(2t))^(0.5) but there was an error and the discontinuity still persisits. Kindly help me in plotting this curve. 

Thank you.

Hi everyone!

I would really appreciate if someone could give me a hand on telling me what is wrong with this problem! pdsolve gives the error: Error, (in pdsolve/sys/info) found functions with same name but depending on different arguments in the given DE system: {f(0, y), f(x, 0), f(x, y), (D[2](f))(0, y), (D[2](f))(x, 0)}.


Thanks in advance!!! 




 

 

Dear All,

I am plotting the following function using implicitplot command.:


plots[implicitplot3d]((17.31626331*M^3-(4*(z[1]-z[2])^2*M^2-1.171300684*(z[1]+z[2])^2)*(1.082266457-2*M)*(1.082266457-3*M))^2 = 4.598621420*(z[1]+z[2])^2*M*(1.082266457-2*M)^3*(4*(z[1]-z[2])^2*M^2-1.171300684*(z[1]+z[2])^2), M = 0 .. 1, z[1] = 0 .. 10, z[2] = -10 .. 0);

How can I extract data points from the plot obtained

with(DEtools):
rho := 0.1;
w0 := 2;
sys := {diff(x(t),t) = y(t),diff(y(t),t) = -2*rho*y - w0^2*x};
DEplot(sys, [x(t), y(t)], t = 0 .. 12, [[x(0) = 1, y(0) = 0]]);

i use flow above, would like to plot a circle move from right hand side to left hand side

and see how a circle influence the flow diagram in animation like weather diagram

I resolved the coefficients to a 2nd order diff eq of the form:ay''+by'+cy=f(t)

I have included the .mw file for convenience at the link at the bottom of the page.  I resolved the coefficients in 2 different ways & they do not concur.  The 1st approach used the LaPlace transform & partial fraction decomposition.  The coefficient results are given by equations # 14 & 15.  The 2nd approach used undetermined coefficients where I assumed the particular solution and then applied the initial conditions to resolve the coefficients pertaining to the homogeneous solution which are given in the results listed in equation #23.  Noted in the 1st case the coeff's are A3 & A4 and for the 2nd approach the coeff's are A1 & A2.  I have worked this numerous times & do not understand why they do not concur.  So I thought I should get some fresh eyes on the problem to find where I may have gone wrong.

Any new perspective will be greatly apprecieated.

I had trouble uploading the .mw file so I have included an alternative link to retrieve the file if the code contents is illegible or you cannot dowlad the file drectly from the weblink  Download coeffs_of_homogen_soln_discrepancy.mw.  You should be able to download from the alternative link below once you paste the link into your browser.  If you cannot & wish for me to provide the file in some other fashion respond with some specific instructions & I will attempt to get the file to you.

https://unl.box.com/s/dywe90wwpy0t4ilkuxshkivz2z26mud8

Thanks 4 any help you can provide.

Download coeffs_of_homogen_soln_discrepancy.mw


 

restart; with(plots); beta := 0.1e-1; Bi := 1; Pr := 3.0; L0 := 1; w = 0.2e-1

Eq1 := diff(f(eta), eta, eta, eta)+f(eta)*(diff(f(eta), eta, eta))-(diff(f(eta), eta))^2+beta*H(eta)*(F(eta)-(diff(f(eta), eta))) = 0

diff(diff(diff(f(eta), eta), eta), eta)+f(eta)*(diff(diff(f(eta), eta), eta))-(diff(f(eta), eta))^2+0.1e-1*H(eta)*(F(eta)-(diff(f(eta), eta))) = 0

(1)

Eq2 := G(eta)*(diff(F(eta), eta))+F(eta)^2+beta*(F(eta)-(diff(f(eta), eta))) = 0

G(eta)*(diff(F(eta), eta))+F(eta)^2+0.1e-1*F(eta)-0.1e-1*(diff(f(eta), eta)) = 0

(2)

Eq3 := G(eta)*(diff(G(eta), eta))+beta*(f(eta)+G(eta)) = 0

G(eta)*(diff(G(eta), eta))+0.1e-1*f(eta)+0.1e-1*G(eta) = 0

(3)

Eq4 := H(eta)*F(eta)+H(eta)*(diff(G(eta), eta))+G(eta)*(diff(H(eta), eta)) = 0

H(eta)*F(eta)+H(eta)*(diff(G(eta), eta))+G(eta)*(diff(H(eta), eta)) = 0

(4)

Eq5 := (diff(theta(eta), eta, eta))/Pr+f(eta)*(diff(theta(eta), eta))+(2*beta*H(eta)*(1/3))*(theta[p](eta)-theta(eta)) = 0

.3333333333*(diff(diff(theta(eta), eta), eta))+f(eta)*(diff(theta(eta), eta))+0.6666666667e-2*H(eta)*(theta[p](eta)-theta(eta)) = 0

(5)

Eq6 := G(eta)*(diff(theta[p](eta), eta))+L0*beta*(theta[p](eta)-theta(eta)) = 0

G(eta)*(diff(theta[p](eta), eta))+0.1e-1*theta[p](eta)-0.1e-1*theta(eta) = 0

(6)

bcs1 := f(0) = 0, (D(f))(0) = 1, (D(theta))(0) = -Bi*(1-theta(0)), (D(f))(5) = 0, F(5) = 0, G(5) = -f(5), H(5) = w, theta(5) = 0, theta[p](5) = 0

f(0) = 0, (D(f))(0) = 1, (D(theta))(0) = -1+theta(0), (D(f))(5) = 0, F(5) = 0, G(5) = -f(5), H(5) = w, theta(5) = 0, theta[p](5) = 0

(7)

p := dsolve({Eq1, Eq2, Eq3, Eq4, Eq5, Eq6, bcs1}, numeric)

Error, (in dsolve/numeric/process_input) system must be entered as a set/list of expressions/equations

 

odeplot(p, [eta, f(eta)], 0 .. 10);

odeplot(p, [eta, f(eta)], 0 .. 10)

(8)

``

 

 


 

Download from_net.mw

I attempted to use convolution in AudioTools to convolve 2 vectors with arbitrary values, but could not since the operation is expecting numeric values.  Can this be done?    Is there not a convolution operastor in the LinearAlgebra package?  See attached:

convolutionWithAu[1].mw

After several attempts on this question,

Int(x*sqrt(2*x^4+3),x) with substitution u = sqrt(2)*x^2,

I don't seem to find the solution. Can you guys help me?

I have this function:

Z := (cos((1/2)*x)-I*sin((1/2)*x))*A0/r^(1/2)+(cos((1/2)*x)+I*sin((1/2)*x))*r^(1/2)*A1+(cos(3*x*(1/2))+I*sin(3*x*(1/2)))*r^(3/2)*A2;

I wanna to obtain another function Y which equal to

Y:=f1*(Re(Z)+Re(Z'))+f2*(Im(Z)+Im(Z'));

where: f1 and f2 are constant 

thanks :)

I am trying to have the output of DETOOLS as 3dpolarplot. As in the following example:

 

EF := {2*(diff(w[2](t), t)) = 10, diff(w[1](t), t) = sqrt(2/w[1](t)), diff(w[3](t), t) = 0}; with(DEtools); DEplot3d(EF, {w[1](t), w[2](t), w[3](t)}, t = 0 .. 100, [[w[1](0) = 1, w[2](0) = 0, w[3](0) = 0]], scene = [w[1](t), w[2](t), w[3](t)], stepsize = .1, orientation = [139, -106])

 

how can I get the output as a polarplot in 3d where, w[2] and w[3] have range 0..2*pi.

Please help in this respect asap.

 

Hello, I have a question.  I don't know why, but results of my calculations can't be saved in raschet document. This document excists, but there is no information in it! And I have an error with floating point format. How to solve that problems?

> restart;
> Digits := 5;
> NULL;
> NULL;
> NULL;
> NULL;
> NULL;
> ScS0 := P/(phi*f*kc*k0*deltad*Bm*etat);
> NULL;
> NULL;
> Sc := sqrt(ScS0);
> A := sqrt(Sc);
> B := A;
> NULL;
> mue := mu0*mur/(1+mur*dzet/lm);
> lm := 2*(LCA-A+(LC0+A))+dzet;
> NULL;
> LC0 := 3*A; LCA := .4*LC0; LD := .9*LC0;
> NULL;
> NULL;
> w1 := EE/(2*Pi*f*Bm*Sc);
> Lm := mue*w1^2*Sc/lm;
> ;
> I11 := sqrt((w2*Id/w1)^2+I0^2);
> ;
> NULL;
> ;
> h1 := sqrt(RAT*I11/deltad);
> ;
> h2 := sqrt(RAT*Id/deltad);
> NULL;
> A := .6;
> Ud := 35000;
> Id := 413;
> R := Ud^2/P;
> P := Ud*Id;
> P1 := P/eta;
> R1 := EE/I11;
> EE := 110000;
> I0 := EE/(2*Pi*f*Lm);
> w2 := w1*sqrt(P*R)/EE;
> mu0 := 4*Pi*10^(-7);
> mur := 1000;
> f := 50;
> k0 := .25;
> kc := .98;
> deltad := 0.3e7;
> Bm := 1.45;
> etat := .98;
> eta := .95;
> RAT := 1;
> dzet := 0.1e-3;
> phi := .5;
> W1 := evalf(w1);
324.55
> LLm := evalf(Lm);
13.407
> W2 := evalf(w2);
103.26
> evalf(lm);
7.2457
> evalf(LC0);
2.5877
> evalf(LCA);
1.0351
> Imax := evalf(I0);
26.117
> P1;
7
1.5215 10
> Rd := evalf(R);
84.746
> Bmm := evalf(mue*w1*I0/lm);
1.4500
> hâ := (.9*LC0*1000)/(w2+1)-4;


> evalf(hâ);

h¬
> Pred := Id/deltad;
> evalf(Pred);
0.00013767
> NULL;
> NULL;
> ll := hâ*(w2+1)+4*w2;
> NULL;
> a := am*nâ/nx;
> NULL;

> Pol := Vit*nâ;
> am := 5.1;
> am := 5.1;
> nâ := 4;
> evalf(a);
20.4
----
nx
> Vit := 35.19;
> evalf(Pol);
140.76
> plotnToka := Id/Pol;
> evalf(Id/Pol);
2.9341
> NULL;
> I1 := evalf(I11);
133.98
> NULL;
> evalf(mue);
0.0012395
> NULL;
> evalf(EE/I11);
821.02
> NULL;
> pr := "%";
"%"
> fd := fopen("C:\\Users\\Ñåìåí\\Desktop\\ÍÈÐ\\raschet4.ms", WRITE); fprintf(fd, "E=%g;Ud=%g;Imax=%g;P=%g;FR=%g;A=%g;B=%g;LC0=%g;LD=%g;LCA=%g;R=%g;BM=%g;", EE, Ud, Imax, P, f, A, B, LC0, LD, LCA, Rd, Bm); fprintf(fd, "\n %s P=%g;Id = %g;Bm=%g;I1=%g;Bmm=%g", pr, P, Id, Bm, I1, Bmm);
Error, (in fprintf) number expected for floating point format
Error, (in fprintf) number expected for floating point format
> fprintf(fd, "\n %s W1 = %g; W2 = %g; Lm=%g; Sc=%g; dzet=%g", pr, W1, W2, LLm, Sc, dzet);
Error, (in fprintf) file descriptor not in use
> fclose(fd);
Error, (in fclose) file descriptor not in use

OnesM:=Matrix(`%id`=119376536)

 

Anyone can solve this??

 

 

Many thanks!

Hi,

I have a first order differential eq. for some variable say $r(x)$, where $x$ is the independent variable.

After solving this differential equation numerically, I want to use its solution in other expression for $r(x)$ and plot the expession with $x$.

Please let me know how to do it.

Thanks in advance.

 

 

1 2 3 4 5 6 7 Last Page 2 of 18