how to plot inequality with maple 12...

I'd like to plot the following inequalities:

sqrt(x)<=1/sqrt(2)

1/sqrt(2)<sqrt(x)<=1/sqrt(2)

Error, (in isolate) cannot isolate for a function ...

Hello,

Im solving 4 ODE equations with BC. im trying to shoot the initial value but im having this error:

""Error, (in isolate) cannot isolate for a function when it appears with different arguments""

anyone could help me???

 >
 >
 >
 >
 >
 >
 >
 >
 (1)
 >
 (2)
 >
 (3)
 >
 >
 Error, (in isolate) cannot isolate for a function when it appears with different arguments
 >

problem in finding particular solution of ode...

hello dear freinds

im new comer in maple.

i want to find  particular solution of an ode by following code:

ode := diff(u[1](t), t, t)+u[1](t) = -(1/4)*a^3*cos(3*beta[0]+3*t)-(3/4)*a^3*cos(beta[0]+t)

m := combine(convert(particularsol(ode), trig))

but maple solution is : m := u[1](t) = (81/32)*a^3*cos(-3*beta[0]+t)-(81/16)*a^3*cos(3*beta[0]+t)-(3/8)*a^3*t*sin(beta[0]+t)+(3/16)*a^3*cos(-beta[0]+t)-(27/16)*a^3*cos(beta[0]+t)+(1/32)*a^3*cos(3*beta[0]+3*t)

but  particular solution is :

u[1](t) = -(3/8)*a^3*t*sin(beta[0]+t)+(1/32)*a^3*cos(3*beta[0]+3*t)

is there any idear for finding the solution?

what's wrong with LinearSolve?...

following commands on my computer got an error.

restart;
with(LinearAlgebra):
A:=Matrix([[1,3],[2,5]],datatype=float):
b:=Vector([1,1],datatype=float):
LinearSolve(A,b,method=hybrid);
Error, (in SWcallhybrid[1]) param 4 should be an rtable

any suggestion is appreciated.

win7, 12.02

Quartic equation Solution in Maple...

Dear all,

I want to know how can I solve a fourth or higher order equation to find out its roots, actually coefficients of each power terms itself are functins of other parameters not constant.

Regards.

How do I restrict input to a function or procedure...

I have a formula, which is called the cube law. It requires input between 0 <= x <= 1. When creating  a procedure I run into all kinds of problems and get nothing but error codes. Trying to use assume works, it puts a tilde mark on the variable x, but doesn't restrict the input. Here is the formula the way it is writtin in a book on calculus:

f(x) := x^3/x^3+(1-x)^3 (0 <= x <= 1).

Trying to restrict the input to be restricted as required by the relational statement has been proven fruitless.

Any help would be greatly appreciated, thanks,

Rolf.

Error, (in dsolve/numeric/bvp/convertsys) too many...

> restart;
> with(plots);
> Eq1 := diff(f(eta), eta, eta, eta)+f(eta)*(diff(f(eta), eta, eta))-2*(diff(f(eta), eta))^2-M^2*(diff(f(eta), eta)) = 0;
/ d / d / d \\\ / d / d \\
|----- |----- |----- f(eta)||| + f(eta) |----- |----- f(eta)||
\ deta \ deta \ deta /// \ deta \ deta //

2
/ d \ 2 / d \
- 2 |----- f(eta)| - M |----- f(eta)| = 0
\ deta / \ deta /
> Eq2 := 1+(4/3)*R*(diff(theta(eta), eta, eta))+Pr*(f(eta)*(diff(theta(eta), eta))-(diff(f(eta), eta))*theta(eta)) = 0;
4 / d / d \\
1 + - R |----- |----- theta(eta)||
3 \ deta \ deta //

/ / d \ / d \ \
+ Pr |f(eta) |----- theta(eta)| - |----- f(eta)| theta(eta)| = 0
\ \ deta / \ deta / /
> bcs1 := f(0) = S, (D(f))(0) = 1+L*G, (D(D(f)))(0) = .1, f(6) = 0;
f(0) = S, D(f)(0) = 1 + L G, @@(D, 2)(f)(0) = 0.1, f(6) = 0
> fixedparameter := [S = .1, M = .1];
[S = 0.1, M = 0.1]
> Eq3 := eval(Eq1, fixedparameter);
/ d / d / d \\\ / d / d \\
|----- |----- |----- f(eta)||| + f(eta) |----- |----- f(eta)||
\ deta \ deta \ deta /// \ deta \ deta //

2
/ d \ / d \
- 2 |----- f(eta)| - 0.01 |----- f(eta)| = 0
\ deta / \ deta /
> fixedparameter := [R = .1, Pr = .7];
[R = 0.1, Pr = 0.7]
> Eq4 := eval(Eq2, fixedparameter);
/ d / d \\ / d \
1 + 0.1333333333 |----- |----- theta(eta)|| + 0.7 f(eta) |----- theta(eta)|
\ deta \ deta // \ deta /

/ d \
- 0.7 |----- f(eta)| theta(eta) = 0
\ deta /
> bcs2 := theta(0) = 1+T*B, (D(theta))(6) = B, theta(6) = 0;
theta(0) = 1 + T B, D(theta)(6) = B, theta(6) = 0

> T := .1; B := .1;
0.1
0.1
> L := [0., .1, .2, .3];
[0., 0.1, 0.2, 0.3]
> for k to 4 do R := dsolve(eval({Eq3, Eq4, bcs1, bcs2}, L = L[k]), [f(eta), theta(eta)], numeric, output = listprocedure); Y || k := rhs(R[2]); YL || k := rhs(R[3]) end do;
Error, (in dsolve/numeric/bvp/convertsys) too many boundary conditions: expected 6, got 7
> plot([YL || (1 .. 4)], 0 .. 6, 1 .. -.2, labels = [eta, diff(f(eta), eta)]);

Error, (in dsolve/numeric/bvp) initial Newton iter...

i am solving 3 ODE with boundary condition.. with boundary condition

b.mw

Maple Worksheet - Error

Failed to load the worksheet /maplenet/convert/b.mw .

then i got this error

Error, (in dsolve/numeric/bvp) initial Newton iteration is not converging

i dont know where i need to change.. could you help me..