Question: From Python into Maple

how to translate python code which use scipy, numpy to maple code



import numpy as np
from scipy.sparse.linalg import svds
from functools import partial

def emsvd(Y, k=None, tol=1E-3, maxiter=None):
    Approximate SVD on data with missing values via expectation-maximization

    Y:          (nobs, ndim) data matrix, missing values denoted by NaN/Inf
    k:          number of singular values/vectors to find (default: k=ndim)
    tol:        convergence tolerance on change in trace norm
    maxiter:    maximum number of EM steps to perform (default: no limit)

    Y_hat:      (nobs, ndim) reconstructed data matrix
    mu_hat:     (ndim,) estimated column means for reconstructed data
    U, s, Vt:   singular values and vectors (see np.linalg.svd and 
                scipy.sparse.linalg.svds for details)

    if k is None:
        svdmethod = partial(np.linalg.svd, full_matrices=False)
        svdmethod = partial(svds, k=k)
    if maxiter is None:
        maxiter = np.inf

    # initialize the missing values to their respective column means
    mu_hat = np.nanmean(Y, axis=0, keepdims=1)
    valid = np.isfinite(Y)
    Y_hat = np.where(valid, Y, mu_hat)

    halt = False
    ii = 1
    v_prev = 0

    while not halt:

        # SVD on filled-in data
        U, s, Vt = svdmethod(Y_hat - mu_hat)

        # impute missing values
        Y_hat[~valid] = ( + mu_hat)[~valid]

        # update bias parameter
        mu_hat = Y_hat.mean(axis=0, keepdims=1)

        # test convergence using relative change in trace norm
        v = s.sum()
        if ii >= maxiter or ((v - v_prev) / v_prev) < tol:
            halt = True
        ii += 1
        v_prev = v

    return Y_hat, mu_hat, U, s, Vt
Please Wait...