## convert function to expression...

Sorry for the simple subject.  Using unapply we can convert an expression to a function.

a:=x^2+sin(x)

a:=unapply(a,x)

a:= x-> x^2+sin(x)

How do you go the other way.  That is convert a function to an expression?

## Code Correction...

Please I am having problem with this code particularly the last subroutine

#subroutine 1

restart;
Digits:=30:

f:=proc(n)
-25*y[n]+12*cos(x[n]):
end proc:

#subroutine 2

e1:=y[n+4] = -y[n]+2*y[n+2]+((1/15)*h^2+(2/945)*h^2*u^2+(1/56700)*h^2*u^4-(1/415800)*h^2*u^6-(167/833976000)*h^2*u^8-(2633/245188944000)*h^2*u^10-(2671/5557616064000)*h^2*u^12-(257857/13304932857216000)*h^2*u^14-(3073333/4215002729166028800)*h^2*u^16)*f(n)+((16/15)*h^2-(8/945)*h^2*u^2-(1/14175)*h^2*u^4+(1/103950)*h^2*u^6+(167/208494000)*h^2*u^8+(2633/61297236000)*h^2*u^10+(2671/1389404016000)*h^2*u^12+(257857/3326233214304000)*h^2*u^14+(3073333/1053750682291507200)*h^2*u^16)*f(n+1)+((26/15)*h^2+(4/315)*h^2*u^2+(1/9450)*h^2*u^4-(1/69300)*h^2*u^6-(167/138996000)*h^2*u^8-(2633/40864824000)*h^2*u^10-(2671/926269344000)*h^2*u^12-(257857/2217488809536000)*h^2*u^14-(3073333/702500454861004800)*h^2*u^16)*f(n+2)+((16/15)*h^2-(8/945)*h^2*u^2-(1/14175)*h^2*u^4+(1/103950)*h^2*u^6+(167/208494000)*h^2*u^8+(2633/61297236000)*h^2*u^10+(2671/1389404016000)*h^2*u^12+(257857/3326233214304000)*h^2*u^14+(3073333/1053750682291507200)*h^2*u^16)*f(n+3)+((1/15)*h^2+(2/945)*h^2*u^2+(1/56700)*h^2*u^4-(1/415800)*h^2*u^6-(167/833976000)*h^2*u^8-(2633/245188944000)*h^2*u^10-(2671/5557616064000)*h^2*u^12-(257857/13304932857216000)*h^2*u^14-(3073333/4215002729166028800)*h^2*u^16)*f(n+4):

e2:=y[n+3] = -y[n+1]+2*y[n+2]+(-(1/240)*h^2-(31/60480)*h^2*u^2-(67/1814400)*h^2*u^4-(109/53222400)*h^2*u^6-(18127/186810624000)*h^2*u^8-(64931/15692092416000)*h^2*u^10-(9701/59281238016000)*h^2*u^12-(20832397/3406062811447296000)*h^2*u^14-(11349439/51876956666658816000)*h^2*u^16)*f(n)+((1/10)*h^2+(31/15120)*h^2*u^2+(67/453600)*h^2*u^4+(109/13305600)*h^2*u^6+(18127/46702656000)*h^2*u^8+(64931/3923023104000)*h^2*u^10+(9701/14820309504000)*h^2*u^12+(20832397/851515702861824000)*h^2*u^14+(11349439/12969239166664704000)*h^2*u^16)*f(n+1)+((97/120)*h^2-(31/10080)*h^2*u^2-(67/302400)*h^2*u^4-(109/8870400)*h^2*u^6-(18127/31135104000)*h^2*u^8-(64931/2615348736000)*h^2*u^10-(9701/9880206336000)*h^2*u^12-(20832397/567677135241216000)*h^2*u^14-(11349439/8646159444443136000)*h^2*u^16)*f(n+2)+((1/10)*h^2+(31/15120)*h^2*u^2+(67/453600)*h^2*u^4+(109/13305600)*h^2*u^6+(18127/46702656000)*h^2*u^8+(64931/3923023104000)*h^2*u^10+(9701/14820309504000)*h^2*u^12+(20832397/851515702861824000)*h^2*u^14+(11349439/12969239166664704000)*h^2*u^16)*f(n+3)+(-(1/240)*h^2-(31/60480)*h^2*u^2-(67/1814400)*h^2*u^4-(109/53222400)*h^2*u^6-(18127/186810624000)*h^2*u^8-(64931/15692092416000)*h^2*u^10-(9701/59281238016000)*h^2*u^12-(20832397/3406062811447296000)*h^2*u^14-(11349439/51876956666658816000)*h^2*u^16)*f(n+4):

e3:=h*delta[n] = (-149/42-(16/245)*u^2-(1324/169785)*u^4-(559246/695269575)*u^6-(14310311/175207932900)*u^8-(170868550903/20641246574949000)*u^10)*y[n]+(128/21+(32/245)*u^2+(2648/169785)*u^4+(1118492/695269575)*u^6+(14310311/87603966450)*u^8+(170868550903/10320623287474500)*u^10)*y[n+1]+(-107/42-(16/245)*u^2-(1324/169785)*u^4-(559246/695269575)*u^6-(14310311/175207932900)*u^8-(170868550903/20641246574949000)*u^10)*y[n+2]+(-(67/1260)*h^2+(1241/198450)*h^2*u^2+(277961/366735600)*h^2*u^4+(26460409/333729396000)*h^2*u^6+(1363374533/168199615584000)*h^2*u^8+(16323847966961/19815596711951040000)*h^2*u^10)*f(n)+((188/105)*h^2+(5078/99225)*h^2*u^2+(556159/91683900)*h^2*u^4+(51834031/83432349000)*h^2*u^6+(67782373/1078202664000)*h^2*u^8+(1854079193287/291405833999280000)*h^2*u^10)*f(n+1)+((31/90)*h^2+(341/33075)*h^2*u^2+(79361/61122600)*h^2*u^4+(23456627/166864698000)*h^2*u^6+(1228061399/84099807792000)*h^2*u^8+(14797833720283/9907798355975520000)*h^2*u^10)*f(n+2)+(-(4/105)*h^2-(46/14175)*h^2*u^2-(809/1871100)*h^2*u^4-(27827/567567000)*h^2*u^6-(637171/122594472000)*h^2*u^8-(33500737/62523180720000)*h^2*u^10)*f(n+3)+((1/252)*h^2+(23/28350)*h^2*u^2+(809/7484400)*h^2*u^4+(27827/2270268000)*h^2*u^6+(637171/490377888000)*h^2*u^8+(33500737/250092722880000)*h^2*u^10)*f(n+4):

e4:=y[3] = -y[1]+2*y[2]+(-(1/240)*h^2-(31/60480)*h^2*u^2-(67/1814400)*h^2*u^4-(109/53222400)*h^2*u^6-(18127/186810624000)*h^2*u^8-(64931/15692092416000)*h^2*u^10-(9701/59281238016000)*h^2*u^12-(20832397/3406062811447296000)*h^2*u^14-(11349439/51876956666658816000)*h^2*u^16)*f(0)+((1/10)*h^2+(31/15120)*h^2*u^2+(67/453600)*h^2*u^4+(109/13305600)*h^2*u^6+(18127/46702656000)*h^2*u^8+(64931/3923023104000)*h^2*u^10+(9701/14820309504000)*h^2*u^12+(20832397/851515702861824000)*h^2*u^14+(11349439/12969239166664704000)*h^2*u^16)*f(1)+((97/120)*h^2-(31/10080)*h^2*u^2-(67/302400)*h^2*u^4-(109/8870400)*h^2*u^6-(18127/31135104000)*h^2*u^8-(64931/2615348736000)*h^2*u^10-(9701/9880206336000)*h^2*u^12-(20832397/567677135241216000)*h^2*u^14-(11349439/8646159444443136000)*h^2*u^16)*f(2)+((1/10)*h^2+(31/15120)*h^2*u^2+(67/453600)*h^2*u^4+(109/13305600)*h^2*u^6+(18127/46702656000)*h^2*u^8+(64931/3923023104000)*h^2*u^10+(9701/14820309504000)*h^2*u^12+(20832397/851515702861824000)*h^2*u^14+(11349439/12969239166664704000)*h^2*u^16)*f(3)+(-(1/240)*h^2-(31/60480)*h^2*u^2-(67/1814400)*h^2*u^4-(109/53222400)*h^2*u^6-(18127/186810624000)*h^2*u^8-(64931/15692092416000)*h^2*u^10-(9701/59281238016000)*h^2*u^12-(20832397/3406062811447296000)*h^2*u^14-(11349439/51876956666658816000)*h^2*u^16)*f(4):

e5:=h*delta[0] = (-149/42-(16/245)*u^2-(1324/169785)*u^4-(559246/695269575)*u^6-(14310311/175207932900)*u^8-(170868550903/20641246574949000)*u^10)*y[0]+(128/21+(32/245)*u^2+(2648/169785)*u^4+(1118492/695269575)*u^6+(14310311/87603966450)*u^8+(170868550903/10320623287474500)*u^10)*y[1]+(-107/42-(16/245)*u^2-(1324/169785)*u^4-(559246/695269575)*u^6-(14310311/175207932900)*u^8-(170868550903/20641246574949000)*u^10)*y[2]+(-(67/1260)*h^2+(1241/198450)*h^2*u^2+(277961/366735600)*h^2*u^4+(26460409/333729396000)*h^2*u^6+(1363374533/168199615584000)*h^2*u^8+(16323847966961/19815596711951040000)*h^2*u^10)*f(0)+((188/105)*h^2+(5078/99225)*h^2*u^2+(556159/91683900)*h^2*u^4+(51834031/83432349000)*h^2*u^6+(67782373/1078202664000)*h^2*u^8+(1854079193287/291405833999280000)*h^2*u^10)*f(1)+((31/90)*h^2+(341/33075)*h^2*u^2+(79361/61122600)*h^2*u^4+(23456627/166864698000)*h^2*u^6+(1228061399/84099807792000)*h^2*u^8+(14797833720283/9907798355975520000)*h^2*u^10)*f(2)+(-(4/105)*h^2-(46/14175)*h^2*u^2-(809/1871100)*h^2*u^4-(27827/567567000)*h^2*u^6-(637171/122594472000)*h^2*u^8-(33500737/62523180720000)*h^2*u^10)*f(3)+((1/252)*h^2+(23/28350)*h^2*u^2+(809/7484400)*h^2*u^4+(27827/2270268000)*h^2*u^6+(637171/490377888000)*h^2*u^8+(33500737/250092722880000)*h^2*u^10)*f(4):

#subroutine 3

inx:=0:
ind:=0:
iny:=1:
h:=Pi/4.0:
n:=0:
omega:=5:
u:=omega*h:
N:=solve(h*p = 500*Pi/2, p):

c:=1:
for j from 0 to 5 do
t[j]:=inx+j*h:
end do:
#e||(1..6);
vars:=y[n+1],y[n+2],y[n+3],delta[n],y[n+4]:

printf("%6s%15s%15s%15s\n",
"h","Num.y","Ex.y","Error y");
for k from 1 to N do

par1:=x[0]=t[0],x[1]=t[1],x[2]=t[2],x[3]=t[3],x[4]=t[4],x[5]=t[5]:
par2:=y[n]=iny,delta[n]=ind:

res:=eval(<vars>, fsolve(eval({e||(1..5)},[par1,par2]), {vars}));

for i from 1 to 5 do
exy:=eval(0.5*cos(5*c*h)+0.5*cos(c*h)):
printf("%6.5f%17.9f%15.9f%13.5g\n",
h*c,res[i],exy,abs(res[i]-exy)):

c:=c+1:
end do:
iny:=res[5]:
inx:=t[5]:
for j from 0 to 5 do
t[j]:=inx + j*h:
end do:
end do:

## How to find this function?...

F(exp(t)) = t

F(F(exp(t))) = 0

what is F ?

is it diff(ln(x),t) ?

## How to draw this graph?...

A system of algebraic equation

in terms of x, y, z

how draw 3 different circles to show the range of possible values for x, y and z respectively?

it may not be a circle

It may be 3 bounded area graph to show the range of x , y , z respectively

updated

like the graph in many examples in

algebraic and geometric ideas in the theory of discrete optimization

bound area have color

## A math problem ,can we reduce order of a PDE equat...

I have a question about order reduction of PDES, can we reduce order of a pde equation from 4 to 2?(or any book recommend fot this);any suggestions?

For example the equation below where A and Q and Ex are constant

## how can i factor a number in an expression...

i have an expression, for example

y=0.0000125698-0.0000125698*cos(54x);

how can i factor this expression to show it like this

y=0.0000125698(1-cos(54x));

tnx for help

## What does this syntax for assigning names to varia...

I'm new to maple and I'm trying to write code in worksheet mode with some source code I have, I don't understand some of the syntax though, like the next:

m,  mass

J=m*r^2; Inertia

m and r are variables, so does this syntax mean that after the comma I set a name or label to the variables? because I tried to follow the same logic with 2d input math but it doesn´t work.

## Datasets reference - increase size...

Using the help page of DataSets,Reference (below) and executing the first few commands, how do you expand to view more rows and columns of bdata?

## Differential order of a function of a derivative o...

I am somewhat surprised to find that

`PDEtools:-difforder(sin(diff(f(x),x)));`

say, returns 1. Does that really make mathematical sense with diff(f(x),x) here being the argument of a function?

PS: I bumped into this issue because I was trying to write down some structured type, or some other matching criterium, that will return true for some scalarly quantity consisting of any number of functions and their derivatives if and only if all arguments to all functions have differential order zero. This criterium would exclude the above function, for instance.

Update: Just for the sake of completeness, or as a service to any visitor to this thread, the above was readily resolved as being due to a blunder of mine, see a comment of mine below. The thread, though, developed into a quite interesting one concerning issues with conserved currents, and related, in the case of Grassmann-odd quantities, issues that are at the time of writing still unresolved.

## Solving two nonlinear simultaneous equations with ...

Hi, I am trying to solve two nonlinear simultaneous equations with two unknown variables T & W. The Range of one variable T is from 0 to 0.4

When I use fsolve command to solve it, it gives me a solution in which T value is more than the specified range so it is an invalid solution for me. When I specify the range of T from 0 to 0.4 in fsolve, it doesn't give any solution.

Solve command in maple also doesn't give any solution and just shows evaluating.

My question is how can I get all the roots of unknown variables (T & W), which can solve these two simultaneous equations.

The maple worksheet is attached.

## Vectors.Aproximate constants a,b,c....

So, i have 3 vectors:

A=2i-3j+ak

B=bi+j-4k

C=3i+cj+2k

where a,b,c are constants.

such that A is perpedicular on B and C, and the scalar product B*C=2.I have to estimate this constants using an iterative algorithm on Maple and then solve the problem using predefined function from Maple and compare the results.If you have an idea pls let me know.Thank you.Sry if I wasn't clear.

## The Repetition Statement for...

hello. i want to write this functionT with  "for"loop. but i don't know

e.mw

## solving a equation...

friends ,

i want to solve an equation but maple result is " Root of .. " term , how can i get rid of that

eqqq.mw

thanks

## Error in dsolve/numeric ...

Hi, There is a problem in solving ODE using dsolve/numeric code. You people would like to help me in resolving the error, here is in attached file,

Latif_paper.mw

## I did not call evalhf command, but receive an erro...

Hi,

In part of my program I defined variable Delta bar(`#mover(mi("&Delta;"),mo("-"))`), and used it and other parameters in a matrix named K (K=f(Delta_bar, x,y,...) then by using some mathematical operations, I initialled parameters to get my matrix named K.

Now I want to convert datatype of my matrix K with following command

M := Matrix(`~`[convert](K, float[8]), datatype = float[8]):

Error, (in `convert/float`[8]) cannot handle unevaluated name ``#mover(mi("&Delta;"),mo("&uminus0;"))`` in evalhf

Do anyone know where the problem is?

 2 3 4 5 6 7 8 Last Page 4 of 1468
﻿