Unanswered Questions

This page lists MaplePrimes questions that have not yet received an answer

#my testing for wildcard to one
#after testing, it loop a very long time and not stop
ppp := [[0,0,0,x],[0,0,1,0],[0,1,0,0],[1,0,0,0]]:
check1 := [seq(0,ii=1..nops(ppp))];
ttt1 := [[0,0,0,1],[0,0,1,0],[0,1,0,0],[1,0,0,0]]:
mmmeaght1 := [seq(0,ii=1..nops(ppp[1]))]:
bbb1 := [seq(0,ii=1..nops(ppp[1]))]:
emap := [(xx) -> if [xx < 0 assuming x > 0] then 0 else 1 end if, (xx) -> evalf(1/(1+exp(xx)))]:
#trace(perceptronrule1);
MM(ppp, ttt1, mmmeaght1, bbb1, check1, emap);
 

when test wildcard variable for input, would like to assume x > 0 then

i try assuming x > 0 , got error

 

I have expression h1 as below:

 

 

 

Error, invalid input: with expects its 1st argument, pname, to be of type {`module`, package}, but received shareman

 

restart

Error, invalid input: with expects its 1st argument, pname, to be of type {`module`, package}, but received shareman

 

"`u__1`(`xi__1`,`xi__2`,Zeta,t):=`u__0`(`xi__1`,`xi__2`,Zeta,t)+Zeta*`phi__1`(`xi__1`,`xi__2`,t):"

"`u__2`(`xi__1`,`xi__2`,Zeta,t):=`v__0`(`xi__1`,`xi__2`,Zeta,t)+Zeta*`phi__2`(`xi__1`,`xi__2`,t):"

"`u__3`(`xi__1`,`xi__2`,Zeta,t):=`w__0`(`xi__1`,`xi__2`,Zeta,t):"

`&phi;__n` := (diff(v__0(`&xi;__1`, `&xi;__2`, Zeta, t)*a__2(`&xi;__1`, `&xi;__2`, Zeta, t), `&xi;__1`)-(diff(u__0(`&xi;__1`, `&xi;__2`, Zeta, t)*a__1(`&xi;__1`, `&xi;__2`, Zeta, t), `&xi;__2`)))/(2*a__1(`&xi;__1`, `&xi;__2`, Zeta, t)*a__2(`&xi;__1`, `&xi;__2`, Zeta, t))

`&varepsilon;0__1` := (diff(u__0(`&xi;__1`, `&xi;__2`, Zeta, t), `&xi;__1`)+v__0(`&xi;__1`, `&xi;__2`, Zeta, t)*(diff(a__1(`&xi;__1`, `&xi;__2`, Zeta, t), `&xi;__2`))/a__2(`&xi;__1`, `&xi;__2`, Zeta, t)+a__1(`&xi;__1`, `&xi;__2`, Zeta, t)*w__0(`&xi;__1`, `&xi;__2`, Zeta, t)/R__1)/a__1(`&xi;__1`, `&xi;__2`, Zeta, t)

`&varepsilon;0__2` := (diff(v__0(`&xi;__1`, `&xi;__2`, Zeta, t), `&xi;__2`)+u__0(`&xi;__1`, `&xi;__2`, Zeta, t)*(diff(a__2(`&xi;__1`, `&xi;__2`, Zeta, t), `&xi;__1`))/a__1(`&xi;__1`, `&xi;__2`, Zeta, t)+a__2(`&xi;__1`, `&xi;__2`, Zeta, t)*w__0(`&xi;__1`, `&xi;__2`, Zeta, t)/R__2)/a__2(`&xi;__1`, `&xi;__2`, Zeta, t)

`&varepsilon;0__4` := (diff(w__0(`&xi;__1`, `&xi;__2`, Zeta, t), `&xi;__2`)+a__2(`&xi;__1`, `&xi;__2`, Zeta, t)*`&phi;__2`(`&xi;__1`, `&xi;__2`, t)-a__2(`&xi;__1`, `&xi;__2`, Zeta, t)*v__0(`&xi;__1`, `&xi;__2`, Zeta, t)/R__2)/a__2(`&xi;__1`, `&xi;__2`, Zeta, t)

`&varepsilon;0__5` := (diff(w__0(`&xi;__1`, `&xi;__2`, Zeta, t), `&xi;__1`)+a__1(`&xi;__1`, `&xi;__2`, Zeta, t)*`&phi;__1`(`&xi;__1`, `&xi;__2`, t)-a__1(`&xi;__1`, `&xi;__2`, Zeta, t)*u__0(`&xi;__1`, `&xi;__2`, Zeta, t)/R__1)/a__1(`&xi;__1`, `&xi;__2`, Zeta, t)

`&omega;0__1` := (diff(v__0(`&xi;__1`, `&xi;__2`, Zeta, t), `&xi;__1`)-u__0(`&xi;__1`, `&xi;__2`, Zeta, t)*(diff(a__1(`&xi;__1`, `&xi;__2`, Zeta, t), `&xi;__2`))/a__2(`&xi;__1`, `&xi;__2`, Zeta, t))/a__1(`&xi;__1`, `&xi;__2`, Zeta, t)-`&phi;__n`

`&omega;0__2` := (diff(u__0(`&xi;__1`, `&xi;__2`, Zeta, t), `&xi;__2`)-v__0(`&xi;__1`, `&xi;__2`, Zeta, t)*(diff(a__2(`&xi;__1`, `&xi;__2`, Zeta, t), `&xi;__1`))/a__1(`&xi;__1`, `&xi;__2`, Zeta, t))/a__2(`&xi;__1`, `&xi;__2`, Zeta, t)+`&phi;__n`

`&varepsilon;1__1` := (diff(`&phi;__1`(`&xi;__1`, `&xi;__2`, t), `&xi;__1`)+`&phi;__2`(`&xi;__1`, `&xi;__2`, t)*(diff(a__1(`&xi;__1`, `&xi;__2`, Zeta, t), `&xi;__2`))/a__2(`&xi;__1`, `&xi;__2`, Zeta, t))/a__1(`&xi;__1`, `&xi;__2`, Zeta, t)

`&varepsilon;1__2` := (diff(`&phi;__2`(`&xi;__1`, `&xi;__2`, t), `&xi;__2`)+`&phi;__1`(`&xi;__1`, `&xi;__2`, t)*(diff(a__2(`&xi;__1`, `&xi;__2`, Zeta, t), `&xi;__1`))/a__1(`&xi;__1`, `&xi;__2`, Zeta, t))/a__2(`&xi;__1`, `&xi;__2`, Zeta, t)

`&omega;1__1` := (diff(`&phi;__2`(`&xi;__1`, `&xi;__2`, t), `&xi;__1`)+`&phi;__1`(`&xi;__1`, `&xi;__2`, t)*(diff(a__1(`&xi;__1`, `&xi;__2`, Zeta, t), `&xi;__2`))/a__2(`&xi;__1`, `&xi;__2`, Zeta, t))/a__1(`&xi;__1`, `&xi;__2`, Zeta, t)-`&phi;__n`/R

`&omega;1__2` := (diff(`&phi;__1`(`&xi;__1`, `&xi;__2`, t), `&xi;__2`)+`&phi;__2`(`&xi;__1`, `&xi;__2`, t)*(diff(a__2(`&xi;__1`, `&xi;__2`, Zeta, t), `&xi;__1`))/a__1(`&xi;__1`, `&xi;__2`, Zeta, t))/a__2(`&xi;__1`, `&xi;__2`, Zeta, t)+`&phi;__n`/R

`&varepsilon;__1` := (Zeta*`&varepsilon;1__1`+`&varepsilon;0__1`)/(1+Zeta/R__1)

`&varepsilon;__2` := (Zeta*`&varepsilon;1__2`+`&varepsilon;0__2`)/(1+Zeta/R__2)

`&varepsilon;__4` := `&varepsilon;0__4`/(1+Zeta/R__2)

`&varepsilon;__5` := `&varepsilon;0__5`/(1+Zeta/R__1)

`&varepsilon;__6` := (Zeta*`&omega;1__1`+`&omega;0__1`)/(1+Zeta/R__1)+(Zeta*`&omega;1__2`+`&omega;0__2`)/(1+Zeta/R__2)

epsilon := Matrix([[`&varepsilon;__1`], [`&varepsilon;__2`], [`&varepsilon;__4`], [`&varepsilon;__5`], [`&varepsilon;__6`]])

with(LinearAlgebra)

e__1 := Matrix([[0, 0, 0, e1__15, 0], [0, 0, e1__24, 0, 0], [e1__31, e1__31, 0, 0, 0]])

e__5 := Matrix([[0, 0, 0, e5__15, 0], [0, 0, e5__24, 0, 0], [e5__31, e5__31, 0, 0, 0]])

E__1 := -Matrix([[diff(`&varphi;1`(`&xi;__1`, `&xi;__2`, Zeta), `&xi;__1`)], [diff(`&varphi;1`(`&xi;__1`, `&xi;__2`, Zeta), `&xi;__2`)], [diff(`&varphi;1`(`&xi;__1`, `&xi;__2`, Zeta), Zeta)]])

E__5 := -Matrix([[diff(`&varphi;5`(`&xi;__1`, `&xi;__2`, Zeta), `&xi;__1`)], [diff(`&varphi;5`(`&xi;__1`, `&xi;__2`, Zeta), `&xi;__2`)], [diff(`&varphi;5`(`&xi;__1`, `&xi;__2`, Zeta), Zeta)]])

`&epsilon;__1` := Matrix([[`&epsilon;1__11`, 0, 0], [0, `&epsilon;1__22`, 0], [0, 0, `&epsilon;1__33`]])

`&epsilon;` := Matrix([[`&epsilon;5__11`, 0, 0], [0, `&epsilon;5__22`, 0], [0, 0, `&epsilon;5__33`]])

f := Matrix([[f1, f2, f3]])

D__1 := Multiply(e__1, epsilon)+Multiply(`&epsilon;__1`, E__1)

D__5 := Multiply(e__5, epsilon)+Multiply(`&epsilon;__5`, E__5)

h1 := simplify((Multiply(Transpose(E__1), D__1))(1))

(-R__1*(diff(varphi1(xi__1, xi__2, Zeta), Zeta))*e1__31*(R__2+Zeta)*(phi__2(xi__1, xi__2, t)*Zeta+v__0(xi__1, xi__2, Zeta, t))*(diff(a__1(xi__1, xi__2, Zeta, t), xi__2))-(diff(varphi1(xi__1, xi__2, Zeta), Zeta))*R__2*e1__31*(R__1+Zeta)*(phi__1(xi__1, xi__2, t)*Zeta+u__0(xi__1, xi__2, Zeta, t))*(diff(a__2(xi__1, xi__2, Zeta, t), xi__1))-a__2(xi__1, xi__2, Zeta, t)*R__1*(diff(varphi1(xi__1, xi__2, Zeta), Zeta))*e1__31*(R__2+Zeta)*(diff(u__0(xi__1, xi__2, Zeta, t), xi__1))-a__1(xi__1, xi__2, Zeta, t)*(diff(varphi1(xi__1, xi__2, Zeta), Zeta))*R__2*e1__31*(R__1+Zeta)*(diff(v__0(xi__1, xi__2, Zeta, t), xi__2))-a__2(xi__1, xi__2, Zeta, t)*R__1*(diff(varphi1(xi__1, xi__2, Zeta), xi__1))*e1__15*(R__2+Zeta)*(diff(w__0(xi__1, xi__2, Zeta, t), xi__1))-a__1(xi__1, xi__2, Zeta, t)*R__2*(diff(varphi1(xi__1, xi__2, Zeta), xi__2))*e1__24*(R__1+Zeta)*(diff(w__0(xi__1, xi__2, Zeta, t), xi__2))+`&epsilon;1__33`*a__1(xi__1, xi__2, Zeta, t)*a__2(xi__1, xi__2, Zeta, t)*(R__2+Zeta)*(R__1+Zeta)*(diff(varphi1(xi__1, xi__2, Zeta), Zeta))^2-e1__31*(a__2(xi__1, xi__2, Zeta, t)*R__1*Zeta*(R__2+Zeta)*(diff(phi__1(xi__1, xi__2, t), xi__1))+a__1(xi__1, xi__2, Zeta, t)*(R__2*Zeta*(R__1+Zeta)*(diff(phi__2(xi__1, xi__2, t), xi__2))+a__2(xi__1, xi__2, Zeta, t)*w__0(xi__1, xi__2, Zeta, t)*(R__1+R__2+2*Zeta)))*(diff(varphi1(xi__1, xi__2, Zeta), Zeta))+a__2(xi__1, xi__2, Zeta, t)*(`&epsilon;1__11`*(R__2+Zeta)*(R__1+Zeta)*(diff(varphi1(xi__1, xi__2, Zeta), xi__1))^2-e1__15*(R__2+Zeta)*(phi__1(xi__1, xi__2, t)*R__1-u__0(xi__1, xi__2, Zeta, t))*(diff(varphi1(xi__1, xi__2, Zeta), xi__1))+(R__1+Zeta)*(`&epsilon;1__22`*(R__2+Zeta)*(diff(varphi1(xi__1, xi__2, Zeta), xi__2))-e1__24*(phi__2(xi__1, xi__2, t)*R__2-v__0(xi__1, xi__2, Zeta, t)))*(diff(varphi1(xi__1, xi__2, Zeta), xi__2)))*a__1(xi__1, xi__2, Zeta, t))/(a__1(xi__1, xi__2, Zeta, t)*a__2(xi__1, xi__2, Zeta, t)*(R__1+Zeta)*(R__2+Zeta))

(1)

NULL

``

 

 

Download simplifymore.mw

 

 

How can i simplify h1 more in Maple?

Dear All, 

I am trying to use define_external to use a C dll from inside MAPLE. The C dll exports a function that has a argument of type function pointer which has a return type of pointer. The function itself returns pointers.  

Pointers are needed as return types as the C function needs to return arrays. 

When I try to pass the C function, as maple procedure as the argument, it errs saying "Error, (in rk4_vec) number expected for float[8] parameter, got proc () option remember; table( [( 1 ) = HFloat(1.0), ( 2 ) = HFloat(-0.0) ] ) 'procname(args)' end proc"

rk4_vec is as follows: 

rk4_vec := define_external("rk4vec", 't0' :: float[8], 'm' :: integer[4], 'u0' :: ARRAY(1..2,datatype=float[8]), 'dt' :: float[8], 'f' :: PROC('t' :: float[8], 'm' :: integer[4], 'u' :: ARRAY(1..2,datatype=float[8]), 'RETURN' :: REF(float[8])), 'RETURN' ::REF(float[8]), "WRAPPER", LIB="rk4.dll");

rk4vec in C looks like this: 

double *rk4vec ( double t0, int m, double u0[], double dt, 
  double *f ( double t, int m, double u[] ) )

I am passing as :

rk4vec_test_f := proc(t, n, u)
local uprime :: REF(float[8]);
#uprime := Array(n);
uprime(1) := u(2);
uprime(2) := -u(1);
return uprime;
end proc;

I have tried the RETURN type on the define_external call as : float[8], ARRAY(1..2, datatype=float[8]) , but that didnt work either. I got the idea of using REF from times2 example on this link.

Any guidance in this matter is highly appreciated. 

Attached are the C file, the dll, maple worksheet. Tested on Windows, with 64-bit, Maple 2016 standard. rk4.zip

 

Funny, I can't seem to find a list of all available units in the help file.

Is there not a listed table of units somewhere?

**edit add**  conversion of units I mean.  ie.  meters, miles, gallons, litres, Pa, etc...

I wish to solve for k interms of x, e is a constant in the equation k=x+e*sin(k). Using the solve function, i got 

RootOf(_Z-x-e*sin(_Z)) and using the function allvalues(RootOf(_Z-x-e*sin(_Z))) still gave the same expression in _Z. Please is there a way out because I need the value of  as a substitute to another equation. Any help will be highly appreciated.
 

The maple I used at school is a much older version and when I do Definite Integrals there and copy it to Word as part of the project, it just copies perfectly.

Now I have Maple 16 at home and when I have a definite integral, I have to copy it using copy special and take it as an image to MS Word. That's not the problem. The problem is the limits sometimes seem to be cut off. The left hand-side image is the older version of Maple. Limits look perfect and even the integral sign is darker and so on. The right hand-side image is the Maple 2016. Can anyone help me change the style on Maple 2016 so it's like the old one so the integrals look better on my project. Thanks alot

 

I am trying to model a disease. The equation is as follows:

S*X - f(X,S,Sp) = 100

I have data for S, I have data for X and I have data for f(X,S,Sp) however I want to find an equation for f(X,S,Sp) that has the best fit with the data because I need to use it later on in my calculation. If anyone is intrested S is the sensitivity of the blood test, Sp is the specificity of the blood test. This means that X*(1-Sp) is the number of false positives.

I currently dont have access to Maple hence I am doing all my modeling in excel 2016. So I am severly limited because excel is useless at algebra.

Maple.xlsx

I have a non-linear function to be optimized. It involves infinite sums. Maple plots the function so I can see where the minimum is. However the NLP solve keeps on evaluating without providing the solution. I have tried to write the function as a procedure but it does not work either.

I'd appreciate any suggestion

 

I have several maple worksheets (from the web) that have discussion blocks mixed within executable blocks.

All the executable blocks are delineated with a single '[' at the left while the discussion blocks do not.

How do I do this?

Tom Dean

So i got this code, im trying to iterate with jacobi and gaussseidel method.

H := HilbertMatrix(n, n, 1); b := Matrix(n, 1, proc (i) options operator, arrow; add(1/(i+j-1), j = 1 .. n) end proc); A := Matrix(n, 1, 1); Multiply(H, A); norm1H := norm(H, 1); norm2H := norm(H, 2); normHinf := norm(H, infinity); norm1b := norm(b, 1); norm2b := norm(b, 2); norminfb := norm(b, infinity); IterativeApproximate(H, initialapprox = Vector(n, 0), tolerance = 10^(-7), maxiterations = 10, method = gaussseidel)

 

But sadly no iteration gave me an answer, anyone knows wheres my mistake? i really help with this! 


thanks in advance

I wish to apply several i-j constraints to an optimization problem that involves minimizing a function x[i,j]. 

Does anyone know of a simple way to exclude values for i and j? For instance, how do we specify the conditions, i not equal to j, i is not equal to 1, etc.?

Thanks in advance!

 

 

Hello.

I've just installed Maple 2015 and when I started it, this happened

It seemed that something was wrong with the graphics or java. But I really don't know what to do next.

Please help me, thank you.

Friends

I have plotted some figures and saved them yesterfay!

now once i opened them some nonsence digits appear on the figure! see the picture please. anyone has similar experience? how to solve it!

Dont make me disappointed maple! two days work is invain now !

 

> restart;
> with(plots); with(StringTools); with(plottools);
> INF := 999999999999999999999;
                     999999999999999999999
> NULL;
> MinoxAngle := 200; MikromaAngle := 350; MinicordAngle := 290; GamiAngle := 280; GamiFocal := 0.25e-1; SummitarDial := [1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 2, 2.2, 3, 4, 5, 6, 7, 10, 20, INF]; Minox35MLDial := [3, 4, 6, 10, 20, INF]; Minox35Angle := 100; MinicordDial := [.35, .4, .5, .6, .7, .8, .9, 1, 1.2, 1.5, 2, 3, 4, 8, INF]; Mini := nops(MinicordDial); MikromaDial := [.5, .6, .7, .8, .9, 1, 1.2, 1.5, 2, 2.5, 3.5, 6, INF]; MinoxLXDial := [.2, .24, .3, .4, .6, 1, 2, 30]; MinoxLXAngle := 270; GamiDial := [.5, .6, .7, .8, 1, 1.2, 1.5, 2, 3, 5, 99990000000000]; MinoxBDial := [8*(1/12), 10*(1/12), 1, 1.5, 2, 3, 6, INF]; MinoxBAngle := 270;
                              200
                              350
                              290
                              280
                             0.025
[1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 2, 2.2, 3, 4, 5, 6, 7, 10, 

  20, 999999999999999999999]
            [3, 4, 6, 10, 20, 999999999999999999999]
                              100
 [0.35, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.2, 1.5, 2, 3, 4, 8, 

   999999999999999999999]
                               15
    [0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.2, 1.5, 2, 2.5, 3.5, 6, 

      999999999999999999999]
              [0.2, 0.24, 0.3, 0.4, 0.6, 1, 2, 30]
                              270
   [0.5, 0.6, 0.7, 0.8, 1, 1.2, 1.5, 2, 3, 5, 99990000000000]
         [2  5                                        ]
         [-, -, 1, 1.5, 2, 3, 6, 999999999999999999999]
         [3  6                                        ]
                              270

> NULL;
> dd := GamiDial; N := nops(dd); dstx := [seq(convert(dd[i], string), i = 1 .. N)];
   [0.5, 0.6, 0.7, 0.8, 1, 1.2, 1.5, 2, 3, 5, 99990000000000]
                               11
  [".5", ".6", ".7", ".8", "1", "1.2", "1.5", "2", "3", "5", 

    "99990000000000"]
> NULL;
> MinicordAngle := 290;
                              290
> NULL;

> LensDial := proc (LensName, focal, Angle, scale, dr) local p1, p2, p3, p8, pk, pt, rk, R, R2, R3, Rc, c1, ds2; R := 1600; R2 := 1400; R3 := 1200; Rc := 1500; CaptionTail1 := "EXTENSION ANGLE"; CaptionTail2 := "LENS FOCUSING DIAL"; Caption1 := Join([LensName, CaptionTail1]); Caption2 := Join([LensName, CaptionTail2]); q := 180/Pi; rotation := 90; dir := dr; ds := scale; N := nops(ds); dstx := [seq(convert(ds[i], string), i = 1 .. N)]; ds2 := subs(dstx[N] = infinity, dstx); MaxAngle := Angle; f := focal; degr := -(-ds[1]+f)*Angle/(D-f)+rotation; g1 := degr/q; for j to N do deg[j] := subs(D = ds[j], degr) end do; for i to N do rdn[i] := evalf(deg[i]/q); xv[i] := R2*cos(rdn[i]); yv[i] := R2*sin(rdn[i]); wx[i] := R3*cos(rdn[i]); wy[i] := R3*sin(rdn[i]) end do; pk := {seq([ds[i], deg[i]], i = 1 .. N)}; rk := {seq([dir*xv[i], yv[i]], i = 1 .. N)}; txt := {seq([dir*wx[i], wy[i], ds2[i]], i = 1 .. N)}; p3 := pointplot(rk, caption = Caption2, captionfont = ["ROMAN", bold, 22], symbol = solidcircle, symbolsize = 15, color = red, axes = none); c1 := circle([0, 0], Rc, thickness = 8); p8 := textplot(txt, 'font' = ["times", "bold", 14]); display(p3, c1, p8, scaling = constrained) end proc;
Warning, `CaptionTail1` is implicitly declared local to procedure `LensDial`
Warning, `CaptionTail2` is implicitly declared local to procedure `LensDial`
Warning, `Caption1` is implicitly declared local to procedure `LensDial`
Warning, `Caption2` is implicitly declared local to procedure `LensDial`
Warning, `q` is implicitly declared local to procedure `LensDial`
Warning, `rotation` is implicitly declared local to procedure `LensDial`
Warning, `dir` is implicitly declared local to procedure `LensDial`
Warning, `ds` is implicitly declared local to procedure `LensDial`
Warning, `N` is implicitly declared local to procedure `LensDial`
Warning, `dstx` is implicitly declared local to procedure `LensDial`
Warning, `MaxAngle` is implicitly declared local to procedure `LensDial`
Warning, `f` is implicitly declared local to procedure `LensDial`
Warning, `degr` is implicitly declared local to procedure `LensDial`
Warning, `g1` is implicitly declared local to procedure `LensDial`
Warning, `j` is implicitly declared local to procedure `LensDial`
Warning, `deg` is implicitly declared local to procedure `LensDial`
Warning, `i` is implicitly declared local to procedure `LensDial`
Warning, `rdn` is implicitly declared local to procedure `LensDial`
Warning, `xv` is implicitly declared local to procedure `LensDial`
Warning, `yv` is implicitly declared local to procedure `LensDial`
Warning, `wx` is implicitly declared local to procedure `LensDial`
Warning, `wy` is implicitly declared local to procedure `LensDial`
Warning, `txt` is implicitly declared local to procedure `LensDial`
> ;
> NULL;
> LensDial("MEOPTA MICROMA  HELGOR 25mm", 0.25e-1, 350, MikromaDial, 1);

> LensDial("GOERZ MINICORD  25mm", 0.25e-1, 335, MinicordDial, 1);


> ;
> LensDial("MINOX LX MINOX 15mm", 0.15e-1, 270, MinoxLXDial, 1);

> LensDial("GAMI ESAMITAR 25mm", 0.25e-1, 290, GamiDial, 1);

I have not been using Maple for the last couple of years because I have Maple installed on my big and heavy laptop. Such laptop forces me to sit at a desk when I work which I dont like. This has resulted in that I have only (for the most part) used my ipad for the last couple of years hence dropping my laptop and Maple. The problem with such approach has been that is more difficult to write scientific papers because you cant run a full version of word on the ipad hence you cant use a citation manager. There does not exist an app on the ipad that offer one. This leads to a lot of extra work!

I have therefore now bought a Microsoft Surface Pro 4 which is a tablet (like the ipad) but its a not a "toy" tablet like the ipad or android tablets because it has Windows 10 Pro (64-bit) which means that you can run full versions of pc software like word 2016 and Maple. The version of Surface Pro 4 I bought has an Intel Core m3-6Y30 processor with 2 cores, 4GB RAM, 128 GB of storage, no fan and a processor base frequency of 0.9 GHz. The m3-6Y30 processor has something called dynamic frequency scaling which means (as I understand it) that the processor can go up to 2.2 GHz when it is under heavy load. Since Maple recommend that you have a system with a cpu with at least 1 GHz to run Maple 2016 I am not anticipating any problems here.

http://www.maplesoft.com/products/system_requirements.aspx

However, I am not completly sure if maplesoft means that the base frequency needs to be 1 Ghz or not? Since my tablet has not been delivered yet I cant comment on how Maple runs on it but as I said I am not anticipating any problems.

Now to my question: When will Maple 2017 come out? Since it is already 2017 I dont want to buy an old version of Maple now that I want to update my Maple software.

1 2 3 4 5 6 7 Last Page 1 of 190