Maple and Geometry Expressions software...

Hi, is anyone using the Geometry Expressions software together with Maple? I've found about this software on forum and installed a free demo version. It is using symbolic geometry, which I haven't been able to find this feature on other software, and can work very well with Maple, but unfortunatelly, my demo version doesn't work properly, and their oficial website http://saltire.com/ has lots of errors 404 page not found. I have requested support, but have had no answer so far. I was so happy finding this software, but now I am thinking maybe wasting my time. If you are using it, or maybe think it would be good to give it a go, please let me know if it is working for you. A particular feature which is not working for me is 'creating angles'. Thank you.

How to write a the iteration code in Maple...

Dears I have the following statment in Matlab

r=8;             ZUM=U(1)-YU(1);            IT=0;

for r=2:10

ZU(r)=abs(U(r)-YU(r));

if ZU(r)> ZUM

ZUM=ZU(r);

else

ZUM=ZUM;

end

end

ZUM;

while IT < 20

IT=IT+1

if ZUM < (0.1)^r

IT=20;

else

for r=1:Nx

YU(r)=U(r);

end

YU;

I need to write this statment in Maple

How do i modify 3d plot axis?...

All the 3d plot in my maple are upside down.....the tickmarks..the numbering even the lebeling are also upside down...how do i solve it....plz help

Correction on a Code...

Please I need Correction on this code particularly if I can make do without the declaration of vector in the third subroutine . The idea is to get maximum error. The code has 3 subroutine. The problem I think is in the third subroutine (Display of results).

Thank you in anticipation of positive response.

# First Declaration of the problem

restart:
Digits:=30:
interface(rtablesize=infinity):

f1:=proc(n)
y2[n]:
end proc:
f2:=proc(n)
-y1[n]+0.001*cos(t[n]):
end proc:
f3:=proc(n)
y4[n]:
end proc:
f4:=proc(n)
-y3[n]+0.001*sin(t[n]):
end proc:
F1:=proc(n)
f2(n):
end proc:
F2:=proc(n)
-(f1(n))-0.001*sin(t[n]):
end proc:
F3:=proc(n)
f4(n):
end proc:
F4:=proc(n)
-f3(n)+0.001*cos(t[n]):
end proc:

# Declaration of the Numerical methods

e1:=y1[n+2] = (7/23)*y1[n]+(16/23)*y1[n+1]+(12/23)*f1(n+2)*h+(16/23)*f1(n+1)*h-(2/23)*F1(n+2)*h^2+(2/23)*h*f1(n)+((24/3703)*y1[n]-(24/3703)*y1[n+1]+(48/18515)*f1(n+2)*h+(8/55545)*f1(n+1)*h-(116/55545)*F1(n+2)*h^2+(208/55545)*h*f1(n))*u^2+((901/2980915)*y1[n]-(901/2980915)*y1[n+1]+(7109/89427450)*f1(n+2)*h+(923/14904575)*f1(n+1)*h-(6241/89427450)*F1(n+2)*h^2+(14383/89427450)*h*f1(n))*u^4+((1979723/158376013950)*y1[n]-(1979723/158376013950)*y1[n+1]+(6364571/2375640209250)*f1(n+2)*h+(728327/215967291750)*f1(n+1)*h-(11785633/4751280418500)*F1(n+2)*h^2+(5106559/791880069750)*h*f1(n))*u^6+((6488435581/13259239887894000)*y1[n]-(6488435581/13259239887894000)*y1[n+1]+(8693517709/91794737685420000)*f1(n+2)*h+(260601208141/1789997384865690000)*f1(n+1)*h-(323357994149/3579994769731380000)*F1(n+2)*h^2+(891627999937/3579994769731380000)*h*f1(n))*u^8+((25090513463/1343541160668420000)*y1[n]-(25090513463/1343541160668420000)*y1[n+1]+(190450718149/55421072877572325000)*f1(n+2)*h+(47563947061/8210529315195900000)*f1(n+1)*h-(1475729910283/443368583020578600000)*F1(n+2)*h^2+(261738159769/27710536438786162500)*h*f1(n))*u^10+((244426606265778733/347060946154014557665200000)*y1[n]-(244426606265778733/347060946154014557665200000)*y1[n+1]+(1316372988977975777/10411828384620436729956000000)*f1(n+2)*h+(105391490263288387/473264926573656214998000000)*f1(n+1)*h-(1284959669761615073/10411828384620436729956000000)*F1(n+2)*h^2+(72506125749079249/204153497737655622156000000)*h*f1(n))*u^12:

e2:=h^2*F1(n+1) = (60/23)*y1[n]-(60/23)*y1[n+1]+(25/46)*f1(n+2)*h+(32/23)*f1(n+1)*h-(4/23)*F1(n+2)*h^2+(31/46)*h*f1(n)+((209/3703)*y1[n]-(209/3703)*y1[n+1]+(1313/222180)*f1(n+2)*h+(1304/55545)*f1(n+1)*h-(131/18515)*F1(n+2)*h^2+(6011/222180)*h*f1(n))*u^2+((77491/35770980)*y1[n]-(77491/35770980)*y1[n+1]+(574843/2146258800)*f1(n+2)*h+(113536/134141175)*f1(n+1)*h-(53461/178854900)*F1(n+2)*h^2+(2258041/2146258800)*h*f1(n))*u^4+((151508243/1900512167400)*y1[n]-(151508243/1900512167400)*y1[n+1]+(1290306599/114030730044000)*f1(n+2)*h+(18919693/647901875250)*f1(n+1)*h-(113769323/9502560837000)*F1(n+2)*h^2+(4470322013/114030730044000)*h*f1(n))*u^6+((42120775181/14464625332248000)*y1[n]-(42120775181/14464625332248000)*y1[n+1]+(332746636891/734357901483360000)*f1(n+2)*h+(302396120633/298332897477615000)*f1(n+1)*h-(369019384141/795554393273640000)*F1(n+2)*h^2+(13797329479621/9546652719283680000)*h*f1(n))*u^8+((18953368786273/177347433208231440000)*y1[n]-(18953368786273/177347433208231440000)*y1[n+1]+(2430202319484337/138330997902420523200000)*f1(n+2)*h+(310803544671199/8645687368901282700000)*f1(n+1)*h-(203453960588449/11527583158535043600000)*F1(n+2)*h^2+(7380568619069419/138330997902420523200000)*h*f1(n))*u^10+((16436168060905785763/4164731353848174691982400000)*y1[n]-(16436168060905785763/4164731353848174691982400000)*y1[n+1]+(167160345356705269819/249883881230890481518944000000)*f1(n+2)*h+(461636091223370027/354948694930242161248500000)*f1(n+1)*h-(13852288092290788813/20823656769240873459912000000)*F1(n+2)*h^2+(29059878239787610409/14699051837111204795232000000)*h*f1(n))*u^12:

e3:=y2[n+2] = (7/23)*y2[n]+(16/23)*y2[n+1]+(12/23)*f2(n+2)*h+(16/23)*f2(n+1)*h-(2/23)*F2(n+2)*h^2+(2/23)*h*f2(n)+((24/3703)*y2[n]-(24/3703)*y2[n+1]+(48/18515)*f2(n+2)*h+(8/55545)*f2(n+1)*h-(116/55545)*F2(n+2)*h^2+(208/55545)*h*f2(n))*u^2+((901/2980915)*y2[n]-(901/2980915)*y2[n+1]+(7109/89427450)*f2(n+2)*h+(923/14904575)*f2(n+1)*h-(6241/89427450)*F2(n+2)*h^2+(14383/89427450)*h*f2(n))*u^4+((1979723/158376013950)*y2[n]-(1979723/158376013950)*y2[n+1]+(6364571/2375640209250)*f2(n+2)*h+(728327/215967291750)*f2(n+1)*h-(11785633/4751280418500)*F2(n+2)*h^2+(5106559/791880069750)*h*f2(n))*u^6+((6488435581/13259239887894000)*y2[n]-(6488435581/13259239887894000)*y2[n+1]+(8693517709/91794737685420000)*f2(n+2)*h+(260601208141/1789997384865690000)*f2(n+1)*h-(323357994149/3579994769731380000)*F2(n+2)*h^2+(891627999937/3579994769731380000)*h*f2(n))*u^8+((25090513463/1343541160668420000)*y2[n]-(25090513463/1343541160668420000)*y2[n+1]+(190450718149/55421072877572325000)*f2(n+2)*h+(47563947061/8210529315195900000)*f2(n+1)*h-(1475729910283/443368583020578600000)*F2(n+2)*h^2+(261738159769/27710536438786162500)*h*f2(n))*u^10+((244426606265778733/347060946154014557665200000)*y2[n]-(244426606265778733/347060946154014557665200000)*y2[n+1]+(1316372988977975777/10411828384620436729956000000)*f2(n+2)*h+(105391490263288387/473264926573656214998000000)*f2(n+1)*h-(1284959669761615073/10411828384620436729956000000)*F2(n+2)*h^2+(72506125749079249/204153497737655622156000000)*h*f2(n))*u^12:

e4:=h^2*F2(n+1) = (60/23)*y2[n]-(60/23)*y2[n+1]+(25/46)*f2(n+2)*h+(32/23)*f2(n+1)*h-(4/23)*F2(n+2)*h^2+(31/46)*h*f2(n)+((209/3703)*y2[n]-(209/3703)*y2[n+1]+(1313/222180)*f2(n+2)*h+(1304/55545)*f2(n+1)*h-(131/18515)*F2(n+2)*h^2+(6011/222180)*h*f2(n))*u^2+((77491/35770980)*y2[n]-(77491/35770980)*y2[n+1]+(574843/2146258800)*f2(n+2)*h+(113536/134141175)*f2(n+1)*h-(53461/178854900)*F2(n+2)*h^2+(2258041/2146258800)*h*f2(n))*u^4+((151508243/1900512167400)*y2[n]-(151508243/1900512167400)*y2[n+1]+(1290306599/114030730044000)*f2(n+2)*h+(18919693/647901875250)*f2(n+1)*h-(113769323/9502560837000)*F2(n+2)*h^2+(4470322013/114030730044000)*h*f2(n))*u^6+((42120775181/14464625332248000)*y2[n]-(42120775181/14464625332248000)*y2[n+1]+(332746636891/734357901483360000)*f2(n+2)*h+(302396120633/298332897477615000)*f2(n+1)*h-(369019384141/795554393273640000)*F2(n+2)*h^2+(13797329479621/9546652719283680000)*h*f2(n))*u^8+((18953368786273/177347433208231440000)*y2[n]-(18953368786273/177347433208231440000)*y2[n+1]+(2430202319484337/138330997902420523200000)*f2(n+2)*h+(310803544671199/8645687368901282700000)*f2(n+1)*h-(203453960588449/11527583158535043600000)*F2(n+2)*h^2+(7380568619069419/138330997902420523200000)*h*f2(n))*u^10+((16436168060905785763/4164731353848174691982400000)*y2[n]-(16436168060905785763/4164731353848174691982400000)*y2[n+1]+(167160345356705269819/249883881230890481518944000000)*f2(n+2)*h+(461636091223370027/354948694930242161248500000)*f2(n+1)*h-(13852288092290788813/20823656769240873459912000000)*F2(n+2)*h^2+(29059878239787610409/14699051837111204795232000000)*h*f2(n))*u^12:

e5:=y3[n+2] = (7/23)*y3[n]+(16/23)*y3[n+1]+(12/23)*f3(n+2)*h+(16/23)*f3(n+1)*h-(2/23)*F3(n+2)*h^2+(2/23)*h*f3(n)+((24/3703)*y3[n]-(24/3703)*y3[n+1]+(48/18515)*f3(n+2)*h+(8/55545)*f3(n+1)*h-(116/55545)*F3(n+2)*h^2+(208/55545)*h*f3(n))*u^2+((901/2980915)*y3[n]-(901/2980915)*y3[n+1]+(7109/89427450)*f3(n+2)*h+(923/14904575)*f3(n+1)*h-(6241/89427450)*F3(n+2)*h^2+(14383/89427450)*h*f3(n))*u^4+((1979723/158376013950)*y3[n]-(1979723/158376013950)*y3[n+1]+(6364571/2375640209250)*f3(n+2)*h+(728327/215967291750)*f3(n+1)*h-(11785633/4751280418500)*F3(n+2)*h^2+(5106559/791880069750)*h*f3(n))*u^6+((6488435581/13259239887894000)*y3[n]-(6488435581/13259239887894000)*y3[n+1]+(8693517709/91794737685420000)*f3(n+2)*h+(260601208141/1789997384865690000)*f3(n+1)*h-(323357994149/3579994769731380000)*F3(n+2)*h^2+(891627999937/3579994769731380000)*h*f3(n))*u^8+((25090513463/1343541160668420000)*y3[n]-(25090513463/1343541160668420000)*y3[n+1]+(190450718149/55421072877572325000)*f3(n+2)*h+(47563947061/8210529315195900000)*f3(n+1)*h-(1475729910283/443368583020578600000)*F3(n+2)*h^2+(261738159769/27710536438786162500)*h*f3(n))*u^10+((244426606265778733/347060946154014557665200000)*y3[n]-(244426606265778733/347060946154014557665200000)*y3[n+1]+(1316372988977975777/10411828384620436729956000000)*f3(n+2)*h+(105391490263288387/473264926573656214998000000)*f3(n+1)*h-(1284959669761615073/10411828384620436729956000000)*F3(n+2)*h^2+(72506125749079249/204153497737655622156000000)*h*f3(n))*u^12:
e6:=h^2*F3(n+1) = (60/23)*y3[n]-(60/23)*y3[n+1]+(25/46)*f3(n+2)*h+(32/23)*f3(n+1)*h-(4/23)*F3(n+2)*h^2+(31/46)*h*f3(n)+((209/3703)*y3[n]-(209/3703)*y3[n+1]+(1313/222180)*f3(n+2)*h+(1304/55545)*f3(n+1)*h-(131/18515)*F3(n+2)*h^2+(6011/222180)*h*f3(n))*u^2+((77491/35770980)*y3[n]-(77491/35770980)*y3[n+1]+(574843/2146258800)*f3(n+2)*h+(113536/134141175)*f3(n+1)*h-(53461/178854900)*F3(n+2)*h^2+(2258041/2146258800)*h*f3(n))*u^4+((151508243/1900512167400)*y3[n]-(151508243/1900512167400)*y3[n+1]+(1290306599/114030730044000)*f3(n+2)*h+(18919693/647901875250)*f3(n+1)*h-(113769323/9502560837000)*F3(n+2)*h^2+(4470322013/114030730044000)*h*f3(n))*u^6+((42120775181/14464625332248000)*y3[n]-(42120775181/14464625332248000)*y3[n+1]+(332746636891/734357901483360000)*f3(n+2)*h+(302396120633/298332897477615000)*f3(n+1)*h-(369019384141/795554393273640000)*F3(n+2)*h^2+(13797329479621/9546652719283680000)*h*f3(n))*u^8+((18953368786273/177347433208231440000)*y3[n]-(18953368786273/177347433208231440000)*y3[n+1]+(2430202319484337/138330997902420523200000)*f3(n+2)*h+(310803544671199/8645687368901282700000)*f3(n+1)*h-(203453960588449/11527583158535043600000)*F3(n+2)*h^2+(7380568619069419/138330997902420523200000)*h*f3(n))*u^10+((16436168060905785763/4164731353848174691982400000)*y3[n]-(16436168060905785763/4164731353848174691982400000)*y3[n+1]+(167160345356705269819/249883881230890481518944000000)*f3(n+2)*h+(461636091223370027/354948694930242161248500000)*f3(n+1)*h-(13852288092290788813/20823656769240873459912000000)*F3(n+2)*h^2+(29059878239787610409/14699051837111204795232000000)*h*f3(n))*u^12:

e7:=y4[n+2] = (7/23)*y4[n]+(16/23)*y4[n+1]+(12/23)*f4(n+2)*h+(16/23)*f4(n+1)*h-(2/23)*F4(n+2)*h^2+(2/23)*h*f4(n)+((24/3703)*y4[n]-(24/3703)*y4[n+1]+(48/18515)*f4(n+2)*h+(8/55545)*f4(n+1)*h-(116/55545)*F4(n+2)*h^2+(208/55545)*h*f4(n))*u^2+((901/2980915)*y4[n]-(901/2980915)*y4[n+1]+(7109/89427450)*f4(n+2)*h+(923/14904575)*f4(n+1)*h-(6241/89427450)*F4(n+2)*h^2+(14383/89427450)*h*f4(n))*u^4+((1979723/158376013950)*y4[n]-(1979723/158376013950)*y4[n+1]+(6364571/2375640209250)*f4(n+2)*h+(728327/215967291750)*f4(n+1)*h-(11785633/4751280418500)*F4(n+2)*h^2+(5106559/791880069750)*h*f4(n))*u^6+((6488435581/13259239887894000)*y4[n]-(6488435581/13259239887894000)*y4[n+1]+(8693517709/91794737685420000)*f4(n+2)*h+(260601208141/1789997384865690000)*f4(n+1)*h-(323357994149/3579994769731380000)*F4(n+2)*h^2+(891627999937/3579994769731380000)*h*f4(n))*u^8+((25090513463/1343541160668420000)*y4[n]-(25090513463/1343541160668420000)*y4[n+1]+(190450718149/55421072877572325000)*f4(n+2)*h+(47563947061/8210529315195900000)*f4(n+1)*h-(1475729910283/443368583020578600000)*F4(n+2)*h^2+(261738159769/27710536438786162500)*h*f4(n))*u^10+((244426606265778733/347060946154014557665200000)*y4[n]-(244426606265778733/347060946154014557665200000)*y4[n+1]+(1316372988977975777/10411828384620436729956000000)*f4(n+2)*h+(105391490263288387/473264926573656214998000000)*f4(n+1)*h-(1284959669761615073/10411828384620436729956000000)*F4(n+2)*h^2+(72506125749079249/204153497737655622156000000)*h*f4(n))*u^12:

e8:=h^2*F4(n+1) = (60/23)*y4[n]-(60/23)*y4[n+1]+(25/46)*f4(n+2)*h+(32/23)*f4(n+1)*h-(4/23)*F4(n+2)*h^2+(31/46)*h*f4(n)+((209/3703)*y4[n]-(209/3703)*y4[n+1]+(1313/222180)*f4(n+2)*h+(1304/55545)*f4(n+1)*h-(131/18515)*F4(n+2)*h^2+(6011/222180)*h*f4(n))*u^2+((77491/35770980)*y4[n]-(77491/35770980)*y4[n+1]+(574843/2146258800)*f4(n+2)*h+(113536/134141175)*f4(n+1)*h-(53461/178854900)*F4(n+2)*h^2+(2258041/2146258800)*h*f4(n))*u^4+((151508243/1900512167400)*y4[n]-(151508243/1900512167400)*y4[n+1]+(1290306599/114030730044000)*f4(n+2)*h+(18919693/647901875250)*f4(n+1)*h-(113769323/9502560837000)*F4(n+2)*h^2+(4470322013/114030730044000)*h*f4(n))*u^6+((42120775181/14464625332248000)*y4[n]-(42120775181/14464625332248000)*y4[n+1]+(332746636891/734357901483360000)*f4(n+2)*h+(302396120633/298332897477615000)*f4(n+1)*h-(369019384141/795554393273640000)*F4(n+2)*h^2+(13797329479621/9546652719283680000)*h*f4(n))*u^8+((18953368786273/177347433208231440000)*y4[n]-(18953368786273/177347433208231440000)*y4[n+1]+(2430202319484337/138330997902420523200000)*f4(n+2)*h+(310803544671199/8645687368901282700000)*f4(n+1)*h-(203453960588449/11527583158535043600000)*F4(n+2)*h^2+(7380568619069419/138330997902420523200000)*h*f4(n))*u^10+((16436168060905785763/4164731353848174691982400000)*y4[n]-(16436168060905785763/4164731353848174691982400000)*y4[n+1]+(167160345356705269819/249883881230890481518944000000)*f4(n+2)*h+(461636091223370027/354948694930242161248500000)*f4(n+1)*h-(13852288092290788813/20823656769240873459912000000)*F4(n+2)*h^2+(29059878239787610409/14699051837111204795232000000)*h*f4(n))*u^12:

# Display of the solutions

h:=evalf(Pi/6):

omega:=1.0:
u:=omega*h:
N:=solve(h*p = 12*Pi/6, p):
n:=0:

exy1:= [seq](eval(cos(i)+0.0005*i*sin(i)), i=h..N,h):
exy2:= [seq](eval(-0.9995*sin(i)+0.0005), i=h..N,h):
exy3:= [seq](eval(sin(i)-0.0005*i*cos(i)), i=h..N,h):
exy4:= [seq](eval(0.9995*sin(i)+0.0005*i*sin(i)), i=h..N,h):

iny1:=1:
iny2:=0:
iny3:=0:
iny4:=0.9995:

err1 := Vector(N):
err2 := Vector(N):
c:=1:
inx:=0:
vars := y1[n+1],y1[n+2],y2[n+1],y2[n+2],y3[n+1],y3[n+2],y4[n+1],y4[n+2]:
for j from 0 to 2 do
x[j]:=inx+j*h:
end do:
printf("%4s%9s%9s%9s%9s%9s%9s%10s%10s%9s%9s%9s%10s\n",
"h","numy1","numy2","numy3","numy4",
"exy1","exy2","exy3","exy4",
"erry1","erry2","erry3","erry4");

st := time():
for k from 1 to N/2 do
param1:=y1[n]=iny1,y2[n]=iny2,y3[n]=iny3,y4[n]=iny4:
param2:=t[n]=x[0],t[n+1]=x[1],t[n+2]=x[2]:

res:=eval(<vars>, fsolve(eval({e||(1..8)},[param1,param2]),{vars})):

for i from 1 to 2 do
printf("%5.2f%9.3f%9.3f%9.3f%9.3f %8.5f%10.5f%10.5f%10.5f %8.2g%9.3g%9.3g%8.3g\n",
h*c,res[i],res[i+2],res[i+4],res[i+6],
exy1[c],exy2[c],exy3[c],exy4[c],
abs(res[i]-exy1[c]),abs(res[i+2]-exy2[c]),abs(res[i+4]-exy3[c]),abs(res[i+6]-exy4[c])):

err1[c] := abs(evalf(res[i]-exy1)):
err2[c] := abs(evalf(res[i+4]-exy3)):
c:=c+1:
end do:
iny1:=res[2]:
iny2:=res[4]:
iny3:=res[6]:
iny4:=res[8]:
inx:=x[2]:
for j from 0 to 2 do
x[j]:=inx+j*h:
end do:
end do:
v:=time() - st;
printf("Maximum error is %.13g", max(err1));
printf("Maximum error is %.13g", max(err2));

out of bound cases...

i got some trouble when i tried to build large matrix. in my case, notification error out of bound appear when looping stop at 9 from 24 repeatation.

and this is my looping command:

the result of the script was:

Find the set of solutions of each of the linear co...

Find the set of solutions of each of the linear congruence:

a) x≡3x≡3 (mod 5).

b) 2x≡52x≡5 (mod 9).

Display 0.25 not .25...

Hello I have the following small piece of code.

XMLTools[Print](MathML[Export]('sin(theta)'=0.25));

which exports sin(theta)=.25, how do I force the 0 to display.

Also

why does the following fail:

sol:=solve([cot(x)=2,x>=0,x<2*Pi],x,AllSolutions, Explicit);

Error in numerical solution of nonlinear ode...

i tried to solve a nonlinear ode with numerical method but maple can't solve it and this error occur:

Error, (in dsolve/numeric/bvp) initial Newton iteration is not converging

my maple codes are attached below:

numeriacal_sol.mw

can any help me?

Hello,
I need to formulate the follow relationship in proper math symbols:

Differential in A (last days value minus today's) has a tendency to reach the Differential in B (today's)

I though this could be expressed with

AΔ -> BΔ

BUt I guess there are more elegant and mathematically correct ways to do this in Maple?

thank you!
Dave

Transition Matrix irreductible aperiodic ...

Hi

I have the transition matrix used in Markov chain

A := Matrix([[alpha, beta, gamma], [delta, epsilon, zeta], [eta, theta, mu]])

I would like to write a system of equations that can be solved  to get a Markov chain  irreducible and aperiodic

All the entries of the transition matrix are in the interval [0,1)

Many tanks for any help

how to write better for passing parameter which is...

for example

func1 := proc(system1)

for i from 1 to 100 do

solve([system1[1], system1[2]],[x,y]);

od:

end proc:

func1([diff(y,t) = data[i+t+1], diff(x,t) = data[i+t+1]])

i is depend on the for loop inside a function, but woud like to pass this system into a function with i

this will cause error

how to write better for passing a system as parameter using variable inside a function?

First order frequency response, no plot possible....

Hi guys,

I've had only a little experience with Maple, but I decided to use it for preliminary frequecy response calculations. The funny thing is, I have already the solution in some way, but I'm too stupid to get it working. I can't see the mistake, however, it should have something to do with the H_n(f) function and the other normalized functions.

NASA has published a nice paper which explains the calculations, however, they have used MathCAD. Anyway, I don't think this should be a problem. Here is the documentation: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20070016024.pdf

The error message is for example for the H_n(f) function:

Warning, expecting only range variable f in expression H__n(f) to be plotted but found name H__n

Maple file: calculations.mw

how to output all possible inequalities solutions?...

i use optimization package with constraint hello >= 0

Minimize(xx=0, {hello >= 0})

but solution only return the case when hello = 0

i would like to find all possible set of solutions using this constraint

do i need to set upper bound, such as {hello <= 7, hello >=0}

can it return solution when hello = 1.1, 1.2, ...2, 2.1, 2.2, 2.3, ....7

Parabolic PDE ...

I am looking for a numerical solver for a parabolic PDE (up to 2nd order derivatives but no mixed ones) on the spatio-temporal domain [X x Y x T], either as an external package or as MAPLE code.

I have coded the method of lines on the domain [X x T] and indeed also used pdsolve as a check for that case. However, pdsolve (numerical) cannot solve the PDEs on the domain [X x Y x T].  The run times and memory requirements for the latter case would of course be significantly greater.

I am about to code up the method of lines (in MAPLE) on the domain [X x Y x T], but am wondering whether there exist external FORTRAN or C code packages that would be faster if called up in MAPLE and whose results would then be post-pocessed in MAPLE.

Does anyone have any suggestions?

MRB

how i can solve following equation?...

hi--how i can solve following equation?

thanks

Eq.mw

Maple Worksheet - Error

Failed to load the worksheet /maplenet/convert/Eq.mw .

 4 5 6 7 8 9 10 Last Page 6 of 205
﻿