Items tagged with finite-difference

Feed

i need to solve for u[i+1] as i attached i wrote the equations but i cant get any answers for it, the delta t is 0.1 and i need to go for ten steps, thank you
 

M := .4556;

.4556

(1)

K := 18;

18

(2)

c := .2865;

.2865

(3)

`u__ double dot`[0] := 0;

0

(4)

u__[0] := 0;

0

(5)

P__[0] := 0;

0

(6)

Typesetting:-delayGradient(t) := .1;

.1

(7)

N := 10;

10

(8)

a__1 := 4/.1^2*.4556+2/(.1)*.2865;

187.9700000

(9)

a__2 := 4/(.1)*.4556+.2865;

18.51050000

(10)

a__3 := .4556;

.4556

(11)

khat := 18+187.9700000;

205.9700000``

(12)

`u__ dot`[0] := 0;

0

(13)

 

for i from 0 to 10 do phat[i+1] := p[i+1]+187.9700000*u[i]+18.51050000*u__dot[i]+.4556*`u__ double dot`[i] end do

p[1]+187.9700000*u[0]+18.51050000*u__dot[0]

 

p[2]+187.9700000*u[1]+18.51050000*u__dot[1]+.4556*`u__ double dot`[1]

 

p[3]+187.9700000*u[2]+18.51050000*u__dot[2]+.4556*`u__ double dot`[2]

 

p[4]+187.9700000*u[3]+18.51050000*u__dot[3]+.4556*`u__ double dot`[3]

 

p[5]+187.9700000*u[4]+18.51050000*u__dot[4]+.4556*`u__ double dot`[4]

 

p[6]+187.9700000*u[5]+18.51050000*u__dot[5]+.4556*`u__ double dot`[5]

 

p[7]+187.9700000*u[6]+18.51050000*u__dot[6]+.4556*`u__ double dot`[6]

 

p[8]+187.9700000*u[7]+18.51050000*u__dot[7]+.4556*`u__ double dot`[7]

 

p[9]+187.9700000*u[8]+18.51050000*u__dot[8]+.4556*`u__ double dot`[8]

 

p[10]+187.9700000*u[9]+18.51050000*u__dot[9]+.4556*`u__ double dot`[9]

 

p[11]+187.9700000*u[10]+18.51050000*u__dot[10]+.4556*`u__ double dot`[10]

(14)

for i from 0 to 10 do u[i+1] := (1/18)*phat[i+1] end do;

(1/18)*p[1]+10.44277778*u[0]+1.028361111*u__dot[0]

 

(1/18)*p[2]+.5801543211*p[1]+109.0516077*u[0]+10.73894656*u__dot[0]+1.028361111*u__dot[1]+0.2531111111e-1*`u__ double dot`[1]

 

(1/18)*p[3]+.5801543211*p[2]+6.058422650*p[1]+1138.801706*u[0]+112.1444325*u__dot[0]+10.73894656*u__dot[1]+.2643183086*`u__ double dot`[1]+1.028361111*u__dot[2]+0.2531111111e-1*`u__ double dot`[2]

 

(1/18)*p[4]+.5801543211*p[3]+6.058422650*p[2]+63.26676144*p[1]+11892.25315*u[0]+1171.099388*u__dot[0]+112.1444325*u__dot[1]+2.760217359*`u__ double dot`[1]+10.73894656*u__dot[2]+.2643183086*`u__ double dot`[2]+1.028361111*u__dot[3]+0.2531111111e-1*`u__ double dot`[3]

 

(1/18)*p[5]+.5801543211*p[4]+6.058422650*p[3]+63.26676144*p[2]+660.6807306*p[1]+124188.1569*u[0]+12229.53067*u__dot[0]+1171.099388*u__dot[1]+28.82433650*`u__ double dot`[1]+112.1444325*u__dot[2]+2.760217359*`u__ double dot`[2]+10.73894656*u__dot[3]+.2643183086*`u__ double dot`[3]+1.028361111*u__dot[4]+0.2531111111e-1*`u__ double dot`[4]

 

(1/18)*p[6]+.5801543211*p[5]+6.058422650*p[4]+63.26676144*p[3]+660.6807306*p[2]+6899.342050*p[1]+1296869.325*u[0]+127710.2711*u__dot[0]+12229.53067*u__dot[1]+301.0061407*`u__ double dot`[1]+1171.099388*u__dot[2]+28.82433650*`u__ double dot`[2]+112.1444325*u__dot[3]+2.760217359*`u__ double dot`[3]+10.73894656*u__dot[4]+.2643183086*`u__ double dot`[4]+1.028361111*u__dot[5]+0.2531111111e-1*`u__ double dot`[5]

 

(1/18)*p[7]+.5801543211*p[6]+6.058422650*p[5]+63.26676144*p[4]+660.6807306*p[3]+6899.342050*p[2]+72048.29583*p[1]+13542918.17*u[0]+1333649.981*u__dot[0]+127710.2711*u__dot[1]+3143.340237*`u__ double dot`[1]+12229.53067*u__dot[2]+301.0061407*`u__ double dot`[2]+1171.099388*u__dot[3]+28.82433650*`u__ double dot`[3]+112.1444325*u__dot[4]+2.760217359*`u__ double dot`[4]+10.73894656*u__dot[5]+.2643183086*`u__ double dot`[5]+1.028361111*u__dot[6]+0.2531111111e-1*`u__ double dot`[6]

 

(1/18)*p[8]+.5801543211*p[7]+6.058422650*p[6]+63.26676144*p[5]+660.6807306*p[4]+6899.342050*p[3]+72048.29583*p[2]+752384.3428*p[1]+141425684.9*u[0]+13927010.38*u__dot[0]+1333649.981*u__dot[1]+32825.20357*`u__ double dot`[1]+127710.2711*u__dot[2]+3143.340237*`u__ double dot`[2]+12229.53067*u__dot[3]+301.0061407*`u__ double dot`[3]+1171.099388*u__dot[4]+28.82433650*`u__ double dot`[4]+112.1444325*u__dot[5]+2.760217359*`u__ double dot`[5]+10.73894656*u__dot[6]+.2643183086*`u__ double dot`[6]+1.028361111*u__dot[7]+0.2531111111e-1*`u__ double dot`[7]

 

1476876999.*u[0]+3143.340237*`u__ double dot`[3]+301.0061407*`u__ double dot`[4]+28.82433650*`u__ double dot`[5]+2.760217359*`u__ double dot`[6]+.2643183086*`u__ double dot`[7]+0.2531111111e-1*`u__ double dot`[8]+342786.3064*`u__ double dot`[1]+32825.20357*`u__ double dot`[2]+13927010.38*u__dot[1]+1333649.981*u__dot[2]+127710.2711*u__dot[3]+12229.53067*u__dot[4]+1171.099388*u__dot[5]+112.1444325*u__dot[6]+10.73894656*u__dot[7]+1.028361111*u__dot[8]+145436674.5*u__dot[0]+(1/18)*p[9]+7856982.494*p[1]+752384.3428*p[2]+72048.29583*p[3]+6899.342050*p[4]+660.6807306*p[5]+63.26676144*p[6]+6.058422650*p[7]+.5801543211*p[8]

 

0.1542269831e11*u[0]+32825.20357*`u__ double dot`[3]+3143.340237*`u__ double dot`[4]+301.0061407*`u__ double dot`[5]+28.82433650*`u__ double dot`[6]+2.760217359*`u__ double dot`[7]+.2643183086*`u__ double dot`[8]+0.2531111111e-1*`u__ double dot`[9]+3579641.223*`u__ double dot`[1]+342786.3064*`u__ double dot`[2]+145436674.5*u__dot[1]+13927010.38*u__dot[2]+1333649.981*u__dot[3]+127710.2711*u__dot[4]+12229.53067*u__dot[5]+1171.099388*u__dot[6]+112.1444325*u__dot[7]+10.73894656*u__dot[8]+1.028361111*u__dot[9]+1518762873.*u__dot[0]+.5801543211*p[9]+(1/18)*p[10]+82048722.17*p[1]+7856982.494*p[2]+752384.3428*p[3]+72048.29583*p[4]+6899.342050*p[5]+660.6807306*p[6]+63.26676144*p[7]+6.058422650*p[8]

 

0.1610558112e12*u[0]+342786.3064*`u__ double dot`[3]+32825.20357*`u__ double dot`[4]+3143.340237*`u__ double dot`[5]+301.0061407*`u__ double dot`[6]+28.82433650*`u__ double dot`[7]+2.760217359*`u__ double dot`[8]+.2643183086*`u__ double dot`[9]+0.2531111111e-1*`u__ double dot`[10]+37381397.82*`u__ double dot`[1]+3579641.223*`u__ double dot`[2]+1518762873.*u__dot[1]+145436674.5*u__dot[2]+13927010.38*u__dot[3]+1333649.981*u__dot[4]+127710.2711*u__dot[5]+12229.53067*u__dot[6]+1171.099388*u__dot[7]+112.1444325*u__dot[8]+10.73894656*u__dot[9]+1.028361111*u__dot[10]+0.1586010318e11*u__dot[0]+6.058422650*p[9]+.5801543211*p[10]+(1/18)*p[11]+856816572.8*p[1]+82048722.17*p[2]+7856982.494*p[3]+752384.3428*p[4]+72048.29583*p[5]+6899.342050*p[6]+660.6807306*p[7]+63.26676144*p[8]

(15)

for i from 0 to 10 do u__dot[i+1] := 2*u[i+1]/(.1)-u[i] end do;

1.111111111*p[1]+207.8555556*u[0]+20.56722222*u__dot[0]

 

1.111111111*p[2]+34.40000000*p[1]+6445.600778*u[0]+636.7611999*u__dot[0]+.5062222222*`u__ double dot`[1]

 

1.111111111*p[3]+34.40000000*p[2]+1065.601376*p[1]+199664.3295*u[0]+19724.81428*u__dot[0]+15.67264000*`u__ double dot`[1]+.5062222222*`u__ double dot`[2]

 

1.111111111*p[4]+34.40000000*p[3]+1065.601376*p[2]+33008.92305*p[1]+6184962.451*u[0]+611011.6704*u__dot[0]+485.4879870*`u__ double dot`[1]+15.67264000*`u__ double dot`[2]+.5062222222*`u__ double dot`[3]

 

191590358.6*u[0]+15.67264000*`u__ double dot`[3]+.5062222222*`u__ double dot`[4]+15038.86535*`u__ double dot`[1]+485.4879870*`u__ double dot`[2]+18927187.66*u__dot[0]+1022510.881*p[1]+33008.92305*p[2]+1065.601376*p[3]+34.40000000*p[4]+1.111111111*p[5]

 

5934856645.*u[0]+485.4879870*`u__ double dot`[3]+15.67264000*`u__ double dot`[4]+.5062222222*`u__ double dot`[5]+465855.9575*`u__ double dot`[1]+15038.86535*`u__ double dot`[2]+586303748.8*u__dot[0]+31674117.34*p[1]+1022510.881*p[2]+33008.92305*p[3]+1065.601376*p[4]+34.40000000*p[5]+1.111111111*p[6]

 

0.1838428805e12*u[0]+15038.86535*`u__ double dot`[3]+485.4879870*`u__ double dot`[4]+15.67264000*`u__ double dot`[5]+.5062222222*`u__ double dot`[6]+14430727.85*`u__ double dot`[1]+465855.9575*`u__ double dot`[2]+0.1816181527e11*u__dot[0]+981162868.1*p[1]+31674117.34*p[2]+1022510.881*p[3]+33008.92305*p[4]+1065.601376*p[5]+34.40000000*p[6]+1.111111111*p[7]

 

0.5694864547e13*u[0]+465855.9575*`u__ double dot`[3]+15038.86535*`u__ double dot`[4]+485.4879870*`u__ double dot`[5]+15.67264000*`u__ double dot`[6]+.5062222222*`u__ double dot`[7]+447017802.5*`u__ double dot`[1]+14430727.85*`u__ double dot`[2]+0.5625949595e12*u__dot[0]+0.3039328810e11*p[1]+981162868.1*p[2]+31674117.34*p[3]+1022510.881*p[4]+33008.92305*p[5]+1065.601376*p[6]+34.40000000*p[7]+1.111111111*p[8]

 

0.1764086927e15*u[0]+14430727.85*`u__ double dot`[3]+465855.9575*`u__ double dot`[4]+15038.86535*`u__ double dot`[5]+485.4879870*`u__ double dot`[6]+15.67264000*`u__ double dot`[7]+.5062222222*`u__ double dot`[8]+0.1384718205e11*`u__ double dot`[1]+447017802.5*`u__ double dot`[2]+0.1742739279e14*u__dot[0]+1.111111111*p[9]+0.9414868743e12*p[1]+0.3039328810e11*p[2]+981162868.3*p[3]+31674117.34*p[4]+1022510.881*p[5]+33008.92305*p[6]+1065.601376*p[7]+34.40000000*p[8]

 

0.5464577183e16*u[0]+447017802.5*`u__ double dot`[3]+14430727.85*`u__ double dot`[4]+465855.9575*`u__ double dot`[5]+15038.86535*`u__ double dot`[6]+485.4879870*`u__ double dot`[7]+15.67264000*`u__ double dot`[8]+.5062222222*`u__ double dot`[9]+0.4289414197e12*`u__ double dot`[1]+0.1384718205e11*`u__ double dot`[2]+0.5398448996e15*u__dot[0]+34.40000000*p[9]+1.111111111*p[10]+0.2916425269e14*p[1]+0.9414868743e12*p[2]+0.3039328810e11*p[3]+981162868.3*p[4]+31674117.34*p[5]+1022510.881*p[6]+33008.92305*p[7]+1065.601376*p[8]

 

0.1692751266e18*u[0]+0.1384718205e11*`u__ double dot`[3]+447017802.5*`u__ double dot`[4]+14430727.85*`u__ double dot`[5]+465855.9575*`u__ double dot`[6]+15038.86535*`u__ double dot`[7]+485.4879870*`u__ double dot`[8]+15.67264000*`u__ double dot`[9]+.5062222222*`u__ double dot`[10]+0.1328723353e14*`u__ double dot`[1]+0.4289414197e12*`u__ double dot`[2]+0.1672266869e17*u__dot[0]+1065.601376*p[9]+34.40000000*p[10]+1.111111111*p[11]+0.9034152876e15*p[1]+0.2916425269e14*p[2]+0.9414868743e12*p[3]+0.3039328810e11*p[4]+981162868.3*p[5]+31674117.34*p[6]+1022510.881*p[7]+33008.92305*p[8]

(16)

 

``

for i from 0 to 10 do `u__ double dot`[i+1] := 4*(u[i+1]-u[i])/.1^2-4*`u__ dot`[i+1]/(.1)-`u__ double dot`[i] end do;

22.22222222*p[1]+3777.111112*u[0]+411.3444444*u__dot[0]-40.00000000*`u__ dot`[1]

 

22.22222222*p[2]+869.6543212*p[1]+159407.8005*u[0]+16097.73632*u__dot[0]-364.9777776*`u__ dot`[1]-40.00000000*`u__ dot`[2]

 

22.22222222*p[3]+869.6543212*p[2]+35344.36401*p[1]+6472746.341*u[0]+654241.8501*u__dot[0]-15483.60256*`u__ dot`[1]-364.9777776*`u__ dot`[2]-40.00000000*`u__ dot`[3]

 

-628632.0873*`u__ dot`[1]-15483.60256*`u__ dot`[2]-364.9777776*`u__ dot`[3]-40.00000000*`u__ dot`[4]+262941585.9*u[0]+26576866.06*u__dot[0]+1435772.456*p[1]+35344.36401*p[2]+869.6543212*p[3]+22.22222222*p[4]

 

-25536885.15*`u__ dot`[1]-628632.0873*`u__ dot`[2]-15483.60256*`u__ dot`[3]-364.9777776*`u__ dot`[4]-40.00000000*`u__ dot`[5]+0.1068138112e11*u[0]+1079622608.*u__dot[0]+58324875.48*p[1]+1435772.456*p[2]+35344.36401*p[3]+869.6543212*p[4]+22.22222222*p[5]

 

-1037375646.*`u__ dot`[1]-25536885.15*`u__ dot`[2]-628632.0873*`u__ dot`[3]-15483.60256*`u__ dot`[4]-364.9777776*`u__ dot`[5]-40.00000000*`u__ dot`[6]+0.4339059231e12*u[0]+0.4385712279e11*u__dot[0]+2369310541.*p[1]+58324875.48*p[2]+1435772.456*p[3]+35344.36401*p[4]+869.6543212*p[5]+22.22222222*p[6]

 

-0.4214093965e11*`u__ dot`[1]-1037375646.*`u__ dot`[2]-25536885.15*`u__ dot`[3]-628632.0873*`u__ dot`[4]-15483.60256*`u__ dot`[5]-364.9777776*`u__ dot`[6]-40.00000000*`u__ dot`[7]+0.1762640503e14*u[0]+0.1781592203e13*u__dot[0]+0.9624765415e11*p[1]+2369310541.*p[2]+58324875.48*p[3]+1435772.456*p[4]+35344.36401*p[5]+869.6543212*p[6]+22.22222222*p[7]

 

-0.1711876309e13*`u__ dot`[1]-0.4214093965e11*`u__ dot`[2]-1037375645.*`u__ dot`[3]-25536885.15*`u__ dot`[4]-628632.0873*`u__ dot`[5]-15483.60256*`u__ dot`[6]-364.9777776*`u__ dot`[7]-40.00000000*`u__ dot`[8]+0.7160311434e15*u[0]+0.7237298245e14*u__dot[0]+0.3909834009e13*p[1]+0.9624765415e11*p[2]+2369310541.*p[3]+58324875.48*p[4]+1435772.456*p[5]+35344.36401*p[6]+869.6543212*p[7]+22.22222222*p[8]

 

-0.6954093867e14*`u__ dot`[1]-0.1711876309e13*`u__ dot`[2]-0.4214093962e11*`u__ dot`[3]-1037375646.*`u__ dot`[4]-25536885.15*`u__ dot`[5]-628632.0873*`u__ dot`[6]-15483.60256*`u__ dot`[7]-364.9777776*`u__ dot`[8]-40.00000000*`u__ dot`[9]+0.2908707689e17*u[0]+0.2939981766e16*u__dot[0]+22.22222222*p[9]+0.1588277878e15*p[1]+0.3909834009e13*p[2]+0.9624765415e11*p[3]+2369310540.*p[4]+58324875.44*p[5]+1435772.456*p[6]+35344.36401*p[7]+869.6543212*p[8]

 

-0.2824936664e16*`u__ dot`[1]-0.6954093867e14*`u__ dot`[2]-0.1711876309e13*`u__ dot`[3]-0.4214093965e11*`u__ dot`[4]-1037375646.*`u__ dot`[5]-25536885.15*`u__ dot`[6]-628632.0873*`u__ dot`[7]-15483.60256*`u__ dot`[8]-364.9777776*`u__ dot`[9]-40.00000000*`u__ dot`[10]+0.1181593915e19*u[0]+0.1194298271e18*u__dot[0]+869.6543212*p[9]+22.22222222*p[10]+0.6452004379e16*p[1]+0.1588277878e15*p[2]+0.3909834009e13*p[3]+0.9624765415e11*p[4]+2369310540.*p[5]+58324875.44*p[6]+1435772.456*p[7]+35344.36401*p[8]

 

-0.1147563911e18*`u__ dot`[1]-0.2824936664e16*`u__ dot`[2]-0.6954093867e14*`u__ dot`[3]-0.1711876310e13*`u__ dot`[4]-0.4214093965e11*`u__ dot`[5]-1037375646.*`u__ dot`[6]-25536885.15*`u__ dot`[7]-628632.0873*`u__ dot`[8]-15483.60256*`u__ dot`[9]-364.9777776*`u__ dot`[10]-40.00000000*`u__ dot`[11]+0.4799946674e20*u[0]+0.4851555123e19*u__dot[0]+35344.36401*p[9]+869.6543212*p[10]+22.22222222*p[11]+0.2620974648e18*p[1]+0.6452004379e16*p[2]+0.1588277877e15*p[3]+0.3909834009e13*p[4]+0.9624765415e11*p[5]+2369310540.*p[6]+58324875.44*p[7]+1435772.456*p[8]

(17)

slon := fsolve({0, p[11]+187.9700000*u[10]+18.51050000*u__dot[10]+.4556*`u__ double dot`[10], 0.1692751266e18*u[0]+0.1384718205e11*`u__ double dot`[3]+447017802.5*`u__ double dot`[4]+14430727.85*`u__ double dot`[5]+465855.9575*`u__ double dot`[6]+15038.86535*`u__ double dot`[7]+485.4879870*`u__ double dot`[8]+15.67264000*`u__ double dot`[9]+.5062222222*`u__ double dot`[10]+0.1328723353e14*`u__ double dot`[1]+0.4289414197e12*`u__ double dot`[2]+0.1672266869e17*u__dot[0]+1065.601376*p[9]+34.40000000*p[10]+1.111111111*p[11]+0.9034152876e15*p[1]+0.2916425269e14*p[2]+0.9414868743e12*p[3]+0.3039328810e11*p[4]+981162868.3*p[5]+31674117.34*p[6]+1022510.881*p[7]+33008.92305*p[8], -0.1147563911e18*`u__ dot`[1]-0.2824936664e16*`u__ dot`[2]-0.6954093867e14*`u__ dot`[3]-0.1711876310e13*`u__ dot`[4]-0.4214093965e11*`u__ dot`[5]-1037375646.*`u__ dot`[6]-25536885.15*`u__ dot`[7]-628632.0873*`u__ dot`[8]-15483.60256*`u__ dot`[9]-364.9777776*`u__ dot`[10]-40.00000000*`u__ dot`[11]+0.4799946674e20*u[0]+0.4851555123e19*u__dot[0]+35344.36401*p[9]+869.6543212*p[10]+22.22222222*p[11]+0.2620974648e18*p[1]+0.6452004379e16*p[2]+0.1588277877e15*p[3]+0.3909834009e13*p[4]+0.9624765415e11*p[5]+2369310540.*p[6]+58324875.44*p[7]+1435772.456*p[8], 0.1610558112e12*u[0]+342786.3064*`u__ double dot`[3]+32825.20357*`u__ double dot`[4]+3143.340237*`u__ double dot`[5]+301.0061407*`u__ double dot`[6]+28.82433650*`u__ double dot`[7]+2.760217359*`u__ double dot`[8]+.2643183086*`u__ double dot`[9]+0.2531111111e-1*`u__ double dot`[10]+37381397.82*`u__ double dot`[1]+3579641.223*`u__ double dot`[2]+1518762873.*u__dot[1]+145436674.5*u__dot[2]+13927010.38*u__dot[3]+1333649.981*u__dot[4]+127710.2711*u__dot[5]+12229.53067*u__dot[6]+1171.099388*u__dot[7]+112.1444325*u__dot[8]+10.73894656*u__dot[9]+1.028361111*u__dot[10]+0.1586010318e11*u__dot[0]+6.058422650*p[9]+.5801543211*p[10]+(1/18)*p[11]+856816572.8*p[1]+82048722.17*p[2]+7856982.494*p[3]+752384.3428*p[4]+72048.29583*p[5]+6899.342050*p[6]+660.6807306*p[7]+63.26676144*p[8]});

{p[1] = 0.2999999998e-1*`u__ dot`[2]+0.9374999995e-13*`u__ dot`[3]-0.1499999999e-4*`u__ dot`[4]+0.1312499999e-15*`u__ dot`[5]+0.4999999999e-8*`u__ dot`[6]-0.6999999938e-9*`u__ dot`[7]+0.9899999882e-9*`u__ dot`[8]-0.1827374978e-8*`u__ dot`[9]+0.3743087460e-8*`u__ dot`[10]+0.7499999993e-16*`u__ dot`[11]+0.4597499946e-10*p[9]-0.1051124990e-9*p[10]-0.2053929019e-9*p[11]-0.2499999999e-1*p[2]-0.2499999998e-3*p[3]-0.2499999999e-4*p[4]-0.2499999999e-6*p[5]-0.5000000000e-8*p[6]-0.9999999992e-9*p[7]-0.3749999970e-10*p[8], p[2] = p[2], p[3] = p[3], p[4] = p[4], p[5] = p[5], p[6] = p[6], p[7] = p[7], p[8] = p[8], p[9] = p[9], p[10] = p[10], p[11] = p[11], u[0] = 0.281894999e-4*`u__ dot`[2]+0.7830419785e-6*`u__ dot`[3]+0.318079236e-8*`u__ dot`[4]+0.9022187373e-9*`u__ dot`[5]-0.1628286346e-10*`u__ dot`[6]+0.1100239238e-9*`u__ dot`[7]-0.2048575058e-9*`u__ dot`[8]+0.3826992048e-9*`u__ dot`[9]-0.7123420880e-9*`u__ dot`[10]+0.1380032829e-8*`u__ dot`[11]-0.9758339382e-11*p[9]+0.1808837852e-10*p[10]-0.3663799046e-10*p[11]-0.989828263e-4*p[2]-0.884545513e-6*p[3]-0.8052117590e-7*p[4]-0.1650827489e-8*p[5]-0.2205906206e-10*p[6]-0.3199234662e-11*p[7]+0.5195642082e-11*p[8], `u__ dot`[1] = -0.4999999998e-1*`u__ dot`[2]+0.2499999997e-3*`u__ dot`[3]+0.4999999998e-5*`u__ dot`[4]+0.7499999995e-6*`u__ dot`[5]-0.1499999999e-7*`u__ dot`[6]+0.7949999997e-7*`u__ dot`[7]-0.1479199999e-6*`u__ dot`[8]+0.2763269999e-6*`u__ dot`[9]-0.5141608198e-6*`u__ dot`[10]+0.9999999996e-6*`u__ dot`[11]-0.7045749997e-8*p[9]+0.1305056749e-7*p[10]-0.2665930549e-7*p[11]+0.1499999999e-2*p[3]-0.2499999999e-4*p[4]-0.9999999996e-9*p[7]+0.3769999998e-8*p[8], `u__ dot`[2] = `u__ dot`[2], `u__ dot`[3] = `u__ dot`[3], `u__ dot`[4] = `u__ dot`[4], `u__ dot`[5] = `u__ dot`[5], `u__ dot`[6] = `u__ dot`[6], `u__ dot`[7] = `u__ dot`[7], `u__ dot`[8] = `u__ dot`[8], `u__ dot`[9] = `u__ dot`[9], `u__ dot`[10] = `u__ dot`[10], `u__ dot`[11] = `u__ dot`[11], u__dot[0] = -0.2499999998e-2*`u__ dot`[2]+0.1249999999e-4*`u__ dot`[3]+0.1249999999e-5*`u__ dot`[4]+0.1749999998e-7*`u__ dot`[5]-0.2499999998e-9*`u__ dot`[6]+0.8349999992e-9*`u__ dot`[7]-0.1525399998e-8*`u__ dot`[8]+0.2848549998e-8*`u__ dot`[9]-0.5316285694e-8*`u__ dot`[10]+0.9999999990e-8*`u__ dot`[11]-0.7260249992e-10*p[9]+0.1354106748e-9*p[10]-0.2570080548e-9*p[11]+0.9999999994e-3*p[2]+0.2499999997e-4*p[3]+0.7499999994e-6*p[4]+0.9999999994e-8*p[5]+0.4999999995e-10*p[7]+0.3949999996e-10*p[8]}

(18)

``


 

Download hw_4_structural.mw

Dear all

I have a PDE and its analytical solution. I want to find the numerical solution by Finite Difference Method.

I duscratize the PDE and boundary condition and Could not able to solve them togethe.

Here is the file FEM-Nu.mw

 

Hi, I'm trying to reproduce the code book Burden Faires (Poisson Equation Finite-Difference. Buden Faires book Numerical Analysis 9th) page 720, algorithm 12.1., But I do not get the exact calculations of Example 2 from page 722. Under the code in maple. Regards.

CODIGO.mw

Dear, need help about Implicit finite difference method 

plz reply as soon as possible

Thanks

How can one deduce values of f(eta), diff(f(eta),eta) and diff(f(eta),eta$2) from values of f1,f2,f3,f4,.. in the results of the finite difference here Trial.mw . I need the outcome for f and its 1st and 2nd derivatives as listed above. Please help.

Page 1 of 1