Items tagged with fsolve

Feed

Hello dears! Hope everything going fine with you. I have faced problem while solving the system of equations using fsolve command please find the attacment and fixed my problem.

I am very thankful to you for this favour. 

VPM_Help.mw

Mob #: 0086-13001903838

hi.i trust that attached equation has more answer but fsolve only gain some of them!!! how i can gain another that i know value of them?

another root  that i known, are : 0.165237712988657e-1    and     .103583272213766    and    .290071279318035

thanks 

root.mw

hi.after calculate Determinant of matrix  and gain value omega'' ω'' by fsolve rule ,when substuting result (ω) in matrix (q) and calculate Determinant again, this value is not zero!!!! may i use LUDecomposition?determinan.mw

I have a system of equations in several variables and I just need one numerical solution of it, I tryed to use fsolve of Maple but it always show me some errors or gives back the command as the output.

aaghulu := {-6-4*y-x-(1+y)*x+sqrt((4*(1+y))*(2+x)*(4+2*y+x)+(-(1+y)*x+2+x)^2), (2*(4+2*y+x))*(1+y)-(1+y)*x+2+x+sqrt((4*(1+y))*(2+x)*(4+2*y+x)+(-(1+y)*x+2+x)^2)-(2+y)*(-(1+y)*x+2+x+sqrt((4*(1+y))*(2+x)*(4+2*y+x)+(-(1+y)*x+2+x)^2))};

fsolve(aaghulu, {x, y}, maxsols = 1);

 

I will be happy if someone guide me how to do these kinds of things using Maple.

Hello guys and gals!

I'm not strong enough with maple to get what the result I want.

It seems that it's because I'm asking for two lenths, and not a lenth and an angle, but I have no Idea how to tackle it diferently.

If you know a trick, please share it!

 

Here's an image:

http://imgur.com/xavAUoB

And here's the maple file attached (I think)

 complex_problem_from_the_internet.mw

Thanks,

Happy new year!

I am trying to solve 4 nonlinear equations for four variables using fsolve  and the output that i am getting is basically the same equations repeated after some time.  I even tried reducing one of the equations using assumptions from my side but it results in same behaviour..  Quite new to maple, would like some advice as to this behaviour. Thanks

 Here's the file

fsolve_1.mw

 

PS- using do loop is part of the solving so i cannot remove that

Hi all

How I use "solve" or "fsolve" for this equation ?

M2 := evalf[4](Matrix(4, 4, {(1, 1) = BesselJ(0, 0.5e-1*sqrt(0.1111111111e-16*omega^2-25.00027778)), (1, 2) = -BesselJ(0, 0.5e-1*sqrt(0.4444444445e-16*omega^2-25)), (1, 3) = -BesselY(0, 0.5e-1*sqrt(0.4444444445e-16*omega^2-25)), (1, 4) = 0, (2, 1) = (0.1111111111e-16*I)*omega*(1-25000000000000/omega^2)*BesselJ(1, 0.5e-1*sqrt(0.1111111111e-16*omega^2-25.00027778))/sqrt(0.1111111111e-16*omega^2-25.00027778), (2, 2) = -(0.4444444444e-16*I)*BesselJ(1, 0.5e-1*sqrt(0.4444444445e-16*omega^2-25))/sqrt(0.4444444445e-16*omega^2-25), (2, 3) = (0.4444444444e-16*I)*BesselY(1, 0.5e-1*sqrt(0.4444444445e-16*omega^2-25))/sqrt(0.4444444445e-16*omega^2-25), (2, 4) = 0, (3, 1) = 0, (3, 2) = BesselJ(0, 0.60e-1*sqrt(0.4444444445e-16*omega^2-25)), (3, 3) = BesselY(0, 0.60e-1*sqrt(0.4444444445e-16*omega^2-25)), (3, 4) = -BesselY(0, 0.60e-1*sqrt(0.1111111111e-16*omega^2-25)), (4, 1) = 0, (4, 2) = (0.4444444444e-16*I)*BesselJ(1, 0.60e-1*sqrt(0.4444444445e-16*omega^2-25))/sqrt(0.4444444445e-16*omega^2-25), (4, 3) = (0.4444444444e-16*I)*BesselY(1, 0.60e-1*sqrt(0.4444444445e-16*omega^2-25))/sqrt(0.4444444445e-16*omega^2-25), (4, 4) = -(0.1111111111e-16*I)*omega*BesselY(1, 0.60e-1*sqrt(0.1111111111e-16*omega^2-25))/sqrt(0.1111111111e-16*omega^2-25)})):


with(LinearAlgebra):
DETM2 := Determinant(M2):
solve(DETM2 = 0, omega);


Error, (in solve) cannot solve for an unknown function with other operations in its arguments

Is this Error because of combination of bessel functions? if I use asymptatic forms, does it work?

Thanks

Hi Please I need help with making the output of my fslolve appear in a way that I can easily copy to an excel.

I am doing analysis for 3 countries and each time I produce a result I copy manually to excel and use 'text to column' and the 'transpose' excel options to arrange the results in order. I do this for almost 20 time because I want to see how hows in parameter affect the variables. is there a way I can convert this to a 32 by 3 matrix so that I can copy all at the same time instead of copying each variable at a time. here is my solve command

UK_SOL_FIRST:= fsolve(eval({eq||(1..32)}, Params_UK_FIRST), InitValue_UK_FIRST);
ES_SOL_FIRST:= fsolve(eval({eq||(1..32)}, Params_ES_FIRST), InitValue_ES_FIRST);
DK_SOL_FIRST:= fsolve(eval({eq||(1..32)}, Params_DK_FIRST), InitValue_DK_FIRST);

The Results

UK_SOL_FIRST:={A_ss = 14.36104896, C_ss = 1.445842138, I_ss = 0.3136706500,

K_ss = 12.54682600, K_v_ss = 125.4682600,

LT_ss = 0.01061009037, L_ss = 4.014721807, N_ss = 0.9307582996,

P_a_ss = 0.9336893751, P_ss = 0.8625403648,

Surp = 0.9890479879, U_b_ss = 0.1781599919,

U_ss = 0.1046105158, V_ss = 0.05052687912, W_max = 1.476989982,

W_min = 0.4879419937, W_ss = 1.826907218,

W_tilde = 3.478049987, Y_ss = 2.428417935, aa_ss = 21.67403493,

chhi = 0.4523413798, f_c_ss = 0.04880034560,

m_ss = 0.03536881539, p_d_ss = 0.9907986980,

x_T = 0.7023268636, y_d_ss = 10.57030302, y_f_ss = 1.174478111,

y_x_ss = 10.57030300, z_ss = 21.14060602,

Profit_ss = 4.094720376, phi_prod = 0.9753885739,

theta_ss = 0.4830000000}

ES_SOL_FIRST:={A_ss = 10.91702785, C_ss = 2.038687975, I_ss = 0.3058575000,

K_ss = 12.23430000, LT_ss = 0.1309315222, L_ss = 2.857497927,

N_ss = 0.8398656215, P_a_ss = 0.9680877046,

P_ss = 0.8638978804, Surp = 2.541617932, U_b_ss = 0.9095925505,

U_ss = 0.1819708847, V_ss = 0.03119500880, W_max = 3.252738093,

W_min = 0.7111201606, W_ss = 3.605202340,

W_tilde = 3.665280790, Y_ss = 2.367929032, aa_ss = 15.67939783,

betta = 0.9909865708, chhi = 0.2898275349,

f_c_ss = 0.6743530978, m_ss = 0.02183650616,

p_d_ss = 0.9939322922, x_T = 0.005556307841,

y_d_ss = 7.853422751, y_f_ss = 1.195945300,

y_x_ss = 7.978400682, z_ss = 15.83182343,

Profit_ss = 3.084421270, phi_prod = 1.009721394,

theta_ss = 0.1714285714}


DK_SOL_FIRST:={A_ss = 16.18893837, C_ss = 1.359886068, I_ss = 0.2487000000,

K_ss = 9.948000000, LT_ss = 0.02282780783, L_ss = 5.834365727,

N_ss = 0.9399351536, P_a_ss = 0.7054445707,

P_ss = 0.8796237740, Surp = 0.6511024854,

U_b_ss = 0.4572819488, U_ss = 0.08450316042,

V_ss = 0.03491187713, W_max = 1.293898615,

W_min = 0.6427961298, W_ss = 2.363825013,

W_tilde = 2.758200925, Y_ss = 1.755529412, aa_ss = 34.56310241,

betta = 0.9851712031, chhi = 0.4499333284,

f_c_ss = 0.1898151486, m_ss = 0.02443831399,

p_d_ss = 1.032636460, x_T = 0.1506134910, y_d_ss = 11.17773688,

y_f_ss = 0.9144278497, y_x_ss = 13.74561008,

z_ss = 24.92334696, Profit_ss = 4.926248216,

phi_prod = 0.7210969276, theta_ss = 0.4131428571}

InputMatrix3aa := Matrix(3, 3, {(1, 1) = xx, (1, 2) = 283.6, (1, 3) = 285.4, (2, 1) = 283.6, (2, 2) = 285.4, (2, 3) = 0, (3, 1) = 285.4, (3, 2) = 0, (3, 3) = 0});
InputMatrix3 := Matrix(3, 3, {(1, 1) = 283.6, (1, 2) = 285.4, (1, 3) = 283.0, (2, 1) = 285.4, (2, 2) = 283.0, (2, 3) = 0, (3, 1) = 283.0, (3, 2) = 0, (3, 3) = 0});
InputMatrix3b := Matrix(3, 3, {(1, 1) = 285.4, (1, 2) = 283.0, (1, 3) = 287.6, (2, 1) = 283.0, (2, 2) = 287.6, (2, 3) = 0, (3, 1) = 287.6, (3, 2) = 0, (3, 3) = 0});
InputMatrix3c := Matrix(3, 3, {(1, 1) = 283.0, (1, 2) = 287.6, (1, 3) = 296.6, (2, 1) = 287.6, (2, 2) = 296.6, (2, 3) = 0, (3, 1) = 296.6, (3, 2) = 0, (3, 3) = 0});
InputMatrix3d := Matrix(3, 3, {(1, 1) = 287.6, (1, 2) = 296.6, (1, 3) = 286.2, (2, 1) = 296.6, (2, 2) = 286.2, (2, 3) = 0, (3, 1) = 286.2, (3, 2) = 0, (3, 3) = 0});

Old_Asso_eigenvector0 := Eigenvectors(MatrixMatrixMultiply(Transpose(InputMatrix3aa), InputMatrix3aa)):
Old_Asso_eigenvector1 := Eigenvectors(MatrixMatrixMultiply(Transpose(InputMatrix3), InputMatrix3)):
Old_Asso_eigenvector2 := Eigenvectors(MatrixMatrixMultiply(Transpose(InputMatrix3b), InputMatrix3b)):
Old_Asso_eigenvector3 := Eigenvectors(MatrixMatrixMultiply(Transpose(InputMatrix3c), InputMatrix3c)):
Old_Asso_eigenvector4 := Eigenvectors(MatrixMatrixMultiply(Transpose(InputMatrix3d), InputMatrix3d)):

#AA2 := MatrixMatrixMultiply(Old_Asso_eigenvector3[2], MatrixInverse(Old_Asso_eigenvector2[2]));
#AA3 := MatrixMatrixMultiply(Old_Asso_eigenvector4[2], MatrixInverse(Old_Asso_eigenvector3[2]));

AA2 := MatrixMatrixMultiply(Old_Asso_eigenvector2[2], MatrixInverse(Old_Asso_eigenvector1[2]));
AA3 := MatrixMatrixMultiply(Old_Asso_eigenvector3[2], MatrixInverse(Old_Asso_eigenvector2[2]));

sol11 := solve([Re(AA2[1][1]) = sin(m*2+phi), Re(AA3[1][1]) = sin(m*3+phi)], [m,phi]);
if nops(sol11) > 1 then
sol11 := sol11[1];
end if:
sin(rhs(sol11[1])+rhs(sol11[2]));

sol12 := solve([Re(AA2[1][2]) = sin(m*2+phi), Re(AA3[1][2]) = sin(m*3+phi)], [m,phi]);
if nops(sol12) > 1 then
sol12 := sol12[1];
end if:
sin(rhs(sol12[1])+rhs(sol12[2]));

sol13 := solve([Re(AA2[1][3]) = sin(m*2+phi), Re(AA3[1][3]) = sin(m*3+phi)], [m,phi]);
if nops(sol13) > 1 then
sol13 := sol13[1];
end if:
sin(rhs(sol13[1])+rhs(sol13[2]));

#*************************************
sol21 := solve([Re(AA2[2][1]) = sin(m*2+phi), Re(AA3[2][1]) = sin(m*3+phi)], [m,phi]);
if nops(sol21) > 1 then
sol21 := sol21[1];
end if:
sin(rhs(sol21[1])+rhs(sol21[2]));

sol22 := solve([Re(AA2[2][2]) = sin(m*2+phi), Re(AA3[2][2]) = sin(m*3+phi)], [m,phi]);
if nops(sol22) > 1 then
sol22 := sol22[1];
end if:
sin(rhs(sol22[1])+rhs(sol22[2]));

sol23 := solve([Re(AA2[2][3]) = sin(m*2+phi), Re(AA3[2][3]) = sin(m*3+phi)], [m,phi]);
if nops(sol23) > 1 then
sol23 := sol23[1];
end if:
sin(rhs(sol23[1])+rhs(sol23[2]));

#**************************************
sol31 := solve([Re(AA2[3][1]) = sin(m*2+phi), Re(AA3[3][1]) = sin(m*3+phi)], [m,phi]);
if nops(sol31) > 1 then
sol31 := sol31[1];
end if:
sin(rhs(sol31[1])+rhs(sol31[2]));

sol32 := solve([Re(AA2[3][2]) = sin(m*2+phi), Re(AA3[3][2]) = sin(m*3+phi)], [m,phi]);
if nops(sol32) > 1 then
sol32 := sol32[1];
end if:
sin(rhs(sol32[1])+rhs(sol32[2]));

sol33 := solve([Re(AA2[3][3]) = sin(m*2+phi), Re(AA3[3][3]) = sin(m*3+phi)], [m,phi]);
if nops(sol33) > 1 then
sol33 := sol33[1];
end if:
sin(rhs(sol33[1])+rhs(sol33[2]));

#****************************************************

AAA1 := Matrix([[sin(rhs(sol11[1])+rhs(sol11[2])),sin(rhs(sol12[1])+rhs(sol12[2])),sin(rhs(sol13[1])+rhs(sol13[2]))],[sin(rhs(sol21[1])+rhs(sol21[2])),sin(rhs(sol22[1])+rhs(sol22[2])),sin(rhs(sol23[1])+rhs(sol23[2]))],[sin(rhs(sol31[1])+rhs(sol31[2])),sin(rhs(sol32[1])+rhs(sol32[2])),sin(rhs(sol33[1])+rhs(sol33[2]))]]);

MA := MatrixMatrixMultiply(Transpose(InputMatrix3aa), InputMatrix3aa) - lambda*IdentityMatrix(3):
eignvalues1 := evalf(solve(Determinant(MA), lambda)):
MA1 := MatrixMatrixMultiply(Transpose(InputMatrix3aa), InputMatrix3aa) - eignvalues1[1]*IdentityMatrix(3):
MA2 := MatrixMatrixMultiply(Transpose(InputMatrix3aa), InputMatrix3aa) - eignvalues1[2]*IdentityMatrix(3):
MA3 := MatrixMatrixMultiply(Transpose(InputMatrix3aa), InputMatrix3aa) - eignvalues1[3]*IdentityMatrix(3):
eigenvector1 := LinearSolve(MA1,<x,y,z>):
eigenvector2 := LinearSolve(MA2,<x,y,z>):
eigenvector3 := LinearSolve(MA3,<x,y,z>):

MR := MatrixMatrixMultiply(AAA1, Matrix([[Re(eigenvector1[1]),Re(eigenvector2[1]),Re(eigenvector3[1])],[Re(eigenvector1[2]),Re(eigenvector2[2]),Re(eigenvector3[2])],[Re(eigenvector1[3]),Re(eigenvector2[3]),Re(eigenvector3[3])]]));
ML := Re(Old_Asso_eigenvector1[2]);

solve(ML[1][1] = MR[1][1], xx);
with(Optimization):
Minimize(ML[1][1] - MR[1][1], {0 <= xx}, assume = nonnegative);

Error, (in Optimization:-NLPSolve) abs is not differentiable at non-real arguments;

Error, (in fsolve/polynom) Digits cannot exceed 38654705646

 

I am using fsolve to find numerical approximations to the roots of many fairly large polynomials (degrees up to ~80).  I often get this error message and I'm not sure why.  Is there any workaround?  Any help is much appreciated.

This may be a trivial question, but does this factor fully with the newer versions of Maple, say at 900 digits?

 

Digits:=900;

rho_poly := -2201506283520*rho^32+(-17612050268160+104204630753280*I)*rho^31+(2237195146493952+737798139150336*I)*rho^30+(14065203494780928-29153528496783360*I)*rho^29+(-260893325886750720-161432056834818048*I)*rho^28+(-1240991775275876352+1727517243589263360*I)*rho^27+(8952004373272068096+6696323263091441664*I)*rho^26+(25553042370906292224-37948239682297921536*I)*rho^25+(-135024511500569280512-65293199430849134592*I)*rho^24+(-79740262928225402880+401487130320847241216*I)*rho^23+(956745211126674882560-164797793704574713856*I)*rho^22+(-1213375867282228772864-1655554058430246551552*I)*rho^21+(-1483956336776821211136+3604946201834409820160*I)*rho^20+(6525094787202650144768-1597915397190007586816*I)*rho^19+(-8575469412912592879616-6168391294117580865536*I)*rho^18+(2408139380338842796032+15004449784317106323456*I)*rho^17+(10583091471310114717696-17047513330720373194752*I)*rho^16+(-22619716982813548707840+8898637295768494915584*I)*rho^15+(26538067620972845277184+5129530051326543351808*I)*rho^14+(-21415800164460070789120-17268159356969925234688*I)*rho^13+(11916012071577094946816+22601135173030541677568*I)*rho^12+(-3551246770922037813248-21229478915196610975744*I)*rho^11+(-977434486760953073664+16249214903618313346048*I)*rho^10+(1977414870691507931136-10721551032564274826240*I)*rho^9+(-1197394212949208115968+6172794574205050632192*I)*rho^8+(280273257275327368320-2996290081120136529792*I)*rho^7+(108849195761508531648+1152454823926345101504*I)*rho^6+(-119736267114490955904-327757949185254534784*I)*rho^5+(49149411853848597568+63563541902968683712*I)*rho^4+(-11524495997215059744-7307364351434838944*I)*rho^3+(1585189353379709888+299568910286253408*I)*rho^2+(-116032795768295808+25487628220230528*I)*rho+3299863116538269-2454681763039104*I;;

I want write loop for this code:

V := 24;

eq := {Eq2, Eq3};

ans := fsolve(eq, {a1 = 0, a3 = 0});

r := 0;

W1 := rhs(ans[1])*phi11(r)+rhs(ans[2])*phi21(r)

V and W1 is Variable, I change V and solve eq and determinen a1 and a3 after i calculated W1

I want write Loop for this,

can you help me????????/ 

Hi, I'm trying to solve without success numerically the following system of 15 nonlinear equations. Could anyone help, please? Thanks
 

restart

n := 0.27231149e-1:

x := 0.5116034663e-1:

F := .1561816797:

eq1 := sigma*C0 = pgamma*W*H1*(1-E0-L0)/(1+n):

eq2 := sigma*C1 = W*H1*(1-L1):

eq3 := (1+R)*C0 = (1+rho)*exp(x)*C1:

eq4 := (1+R)*C1 = (1+rho)*exp(x)*C2:

eq5 := C1 = (1+phi)*C0:

eq6 := pgamma*L0+pgamma*(1+(1+n)*F/(pgamma*W*H1))*E0+L1 = (1+R)*(1+(1+n)*F/(pgamma*W*H1))/(ppsi*exp(x))-pgamma*(1+(1+n)*F/(pgamma*W*H1))/ppsi:

eq7 := 1 = pgamma*(1+ppsi*E0)/(1+n):

eq8 := exp(x)*A1 = pgamma*W*L0*H1/(1+n)+Epsilon1-C0-F*E0:

eq9 := exp(x)*A2 = W*L1*H1+(1+R)*A1-C1-(1+n)*Epsilon1:

eq10 := (1+R)*A2 = C2:

eq11 := Y = H^alpha*K^(1-alpha):

eq12 := alpha*Y = W*H:

eq13 := (1-alpha)*Y = (1+R)*K:

eq14 := K = A1/(1+n)+A2/(1+n)^2:

eq15 := H = (pgamma*L0+L1)*H1/(1+n):

eq := {eq1, eq2, eq3, eq4, eq5, eq6, eq7, eq8, eq9, eq10, eq11, eq12, eq13, eq14, eq15}:

vars := {A1, A2, C0, C1, C2, E0, H, H1, K, L0, L1, R, W, Y, Epsilon1}:

NULL

fsolve(eq, vars); 1; assign(%)

fsolve({1 = .6865382886+.1072247031*E0, C1 = 1.475639047*C0, H = .9734907289*(.7052335150*L0+L1)*H1, K = .9734907289*A1+.9476841993*A2, Y = H^.6874443*K^.3125557, (1+R)*A2 = C2, (1+R)*C0 = 1.121850394*C1, (1+R)*C1 = 1.121850394*C2, 1.052491643*A1 = .6865382886*W*L0*H1+Epsilon1-C0-.1561816797*E0, 1.052491643*A2 = W*L1*H1+(1+R)*A1-C1-1.027231149*Epsilon1, 5.171201776*C0 = .6865382886*W*H1*(1-E0-L0), 5.171201776*C1 = W*H1*(1-L1), .3125557*Y = (1+R)*K, .6874443*Y = W*H, .7052335150*L0+.7052335150*(1+.2274915796/(W*H1))*E0+L1 = 6.083468374*(1+R)*(1+.2274915796/(W*H1))-4.515468884-1.027231149/(W*H1)}, {A1, A2, C0, C1, C2, E0, H, H1, K, L0, L1, R, W, Y, Epsilon1})

(1)

``

 

Download DDGE.mw

hi.i am a problem with rule solve or fsolve in maple....please see attached file and say your comments

thanks

equ.mw

As part of a project, I am numerically estimating the roots of many large polynomials. Occasionally, "fsolve" fails with strange errors related to "fsolve/refine2". Searches for these error messages have turned up nothing.

I've inluded the code below that causes the error on Maple 18.02. I apologize for the polynomial in question being so long, it's the shortest example I have. The error it generates is:

    Error, (in fsolve/refine2) invalid input: evalf expects its 2nd argument, n, to be of type posint, but received undefined

Is this a bug? Or am I missing some fsolve option to prevent this? Note that it only happens when the "complex" flag is used.

=========

P := x^14-22702264347017701018473605850972699930097274504938699916055555261201515180511538865331807292689345943133521696082918467714371257277276696385067641909170155322906230250853577229812913946663078548646992393337618113886746876557117483839533553328895358682670189394678910311793504505447628428181885141769168591937690303328913335175451328463754619536253583902806843310134957600949886784187209785783810122275010505534415815566439121541947044486358488039865870455952098827525405324562601732796858645293515431747164008309785658410612354201118685855495413079021176507985235094746401708925593687656572387531020719291601076812080687859808747213536777976702071405128537760507468013438105233313663196919816564525291458692028177366393652501832447863872200682143768513389322886600569382594287138458765510827267842205096062437750804878586024353928794905249283675708441066101095406513448522689302522442783437142289641259057413952301148939774149714785/3195755849586795631956816504521213454239300164039404772924331154185577854140658969534719471406093912112781063157828311505891258148739680804289213024862131311540960306206602785748866445362483281617891374949555209869677857419473553982132073059025609434698683760348542259396937054082293168625919023158753310878489047944378154369352523436731294817697449949932655665007647918855300664365159027040571937825740235967492228453331261542499260943085539271304638576578246276634403350307801994081681247214869084246168101721298760198550961832560608341435638093413744839736250679074198753022491225840288065341597851066663786665723409977381822591654466626645542917017628998630902708076612502066607817250779545511895971357711983287763127653752300554550391349040027472903180009282594974618980021621163037989247901106508257414514187962209356325857887950302223210328647697948055097831009797738621154319922212951316644741457327450027692469090867369598*x^13+19088859498864751331345860430721481446264521641744903691362655800372349704990331481604867685549645823662978708926030541236042951546550966879612333115396628902751820387999904934599090760358886795430484312266737008386396041896213971568537362589851823779617430207078749426022658232278071527361264481524611089324107754031784837527081637219350016169914382322455035364613935875393571579561406195287363628553419822536428710010055920488818415526206620047517917895155637033562338042275152771173240104076821411360366799172066699958543868065037999702280159896040588223787643434915579465270491451613199185385049196526456210057933748521047167538262357063585093474544299142560492581751607753970282443057122762426600024763892341448332834018680513343674283251162037067303651651086278409136799357849452879897251530675098741236156640469815784447341282424004221641529187217962536022784563163918511210513153785881467158114512281634789894107114727680109/1065251949862265210652272168173737818079766721346468257641443718061859284713552989844906490468697970704260354385942770501963752716246560268096404341620710437180320102068867595249622148454161093872630458316518403289892619139824517994044024353008536478232894586782847419798979018027431056208639674386251103626163015981459384789784174478910431605899149983310885221669215972951766888121719675680190645941913411989164076151110420514166420314361846423768212858859415425544801116769267331360560415738289694748722700573766253399516987277520202780478546031137914946578750226358066251007497075280096021780532617022221262221907803325793940863884822208881847639005876332876967569358870834022202605750259848503965323785903994429254375884584100184850130449680009157634393336427531658206326673873721012663082633702169419138171395987403118775285962650100741070109549232649351699277003265912873718106640737650438881580485775816675897489696955789866*x^12-127688837609696458957114129756229560761957972259253280819996356067917173759565012901801561924391178368568146719627801670086606489531437386224078360185442651606983719684283163392876990522586784115059551865746707609765679864632874671595399416688286257053075135779925094175440416074968471245768830366824397599424731191899057489251725430472639828977416853808059394673266682604308077331301860791811476274942568803494246399367164616630866928631772760003749091917886558963952047434319195736393271420111064778587861639539510320744497931007588784407172972776901653630399291814617861650330433072614870207218474263898528043868017109168847074788133295715653324601280999334137328493510780499508083274179117783232296907665583279993325725716354393277745170409349317876378784871325009748734263290375761397883657890413900529632709410443413043575189427898559331856967020187201932742096158736566419271039506140015010172468151681141071869870925420155369/6391511699173591263913633009042426908478600328078809545848662308371155708281317939069438942812187824225562126315656623011782516297479361608578426049724262623081920612413205571497732890724966563235782749899110419739355714838947107964264146118051218869397367520697084518793874108164586337251838046317506621756978095888756308738705046873462589635394899899865311330015295837710601328730318054081143875651480471934984456906662523084998521886171078542609277153156492553268806700615603988163362494429738168492336203442597520397101923665121216682871276186827489679472501358148397506044982451680576130683195702133327573331446819954763645183308933253291085834035257997261805416153225004133215634501559091023791942715423966575526255307504601109100782698080054945806360018565189949237960043242326075978495802213016514829028375924418712651715775900604446420657295395896110195662019595477242308639844425902633289482914654900055384938181734739196*x^11+1941963889284143967630503461641384772639246155223080045213834947146248802376220874585881737054605033501866020180580996666713652795880193379326169002867732637532200447194534846339338413543240801939477478241099683412186213038204202290858666453453417846899586996164402928265510496311234255565224399736489137714957014062613618467711330149177700905620590617841256796029108309659216987574764436490494934048714919670190684046029243176314833939438755957046700890497104507387346236050782952954331963365980088907386124713398155694605596359102946980291494749083679360161061519037964676115079433007443504537411864172301459893087256329861985994656612965817883540871319790509064913361633903111901088284675188114992527367188875256164648035419067179258498467050438971237757123876227876902374176109894916835963212462977715488403210262610643862278435267351697867431486692646214503482828458653994117921039913207766285237066798400775441411774079610837/177541991643710868442045361362289636346627786891078042940240619676976547452258831640817748411449661784043392397657128416993958786041093378016067390270118406196720017011477932541603691409026848978771743052753067214982103189970752999007337392168089413038815764463807903299829836337905176034773279064375183937693835996909897464964029079818405267649858330551814203611535995491961148020286612613365107656985568664860679358518403419027736719060307737294702143143235904257466852794877888560093402623048282458120450095627708899919497879586700463413091005189652491096458371059677708501249512546682670296755436170370210370317967220965656810647470368146974606500979388812827928226478472337033767625043308083994220630983999071542395980764016697475021741613334859605732222737921943034387778978953502110513772283694903189695232664567186462547660441683456845018258205441558616546167210985478953017773456275073146930080962636112649581616159298311*x^10-8863297827898165839415750496524113595646716762121322844115735229732707054220168863570410233048901583522983420448394277638284549018035513758104914498710641607628947697242244219841860993879788358381735454419316105861594264938271360192839234405577377200072500528683390799739067094807744149646139901716484318789624752809347475833611242793680607929117314808486761679788190886930919706651326101755691947512243418216460237241769969836429891299366314558409971924025105037908119564861578530568458046073973392717591352587749276788404403969612641258746844907150027624513801294297807549646148499291417732004938891897241268904655286649579390754923163271693343760744341965406109121853934340673760793157027856466007930099451628400810185712964495614693463085689905135333950374874743558356849483930901197948196695521171654728867080261994068527012182974920030328883744764966738189985551194012023576203112120540148697524837372858043563451876509542849/3195755849586795631956816504521213454239300164039404772924331154185577854140658969534719471406093912112781063157828311505891258148739680804289213024862131311540960306206602785748866445362483281617891374949555209869677857419473553982132073059025609434698683760348542259396937054082293168625919023158753310878489047944378154369352523436731294817697449949932655665007647918855300664365159027040571937825740235967492228453331261542499260943085539271304638576578246276634403350307801994081681247214869084246168101721298760198550961832560608341435638093413744839736250679074198753022491225840288065341597851066663786665723409977381822591654466626645542917017628998630902708076612502066607817250779545511895971357711983287763127653752300554550391349040027472903180009282594974618980021621163037989247901106508257414514187962209356325857887950302223210328647697948055097831009797738621154319922212951316644741457327450027692469090867369598*x^9+2017798632508126214178032687554207106376957218619840832956662086046164665731840663616010195125899727795939076982732552766119787016500832211715921717230052496681979577432852310401087868502196643627732719648105718026988556567683519630485815400374479891004302010335606831102703848328584097945978508243431022893640963113656761657600197417501485533198377194139684052176343994472985299657953300469363286556184526802586584214755307697158247107887873091236237632599123600602905959806309348139033950376959229535155791803352079139955123963320105932227644780215619966766055108655288741020886209290486474711298006297607280189057416424593467478571219372613281308689321078436254551057742499063473864232694061267319983756694814398288262834174390168011042951364931686132193005284966871663010432330119034962795839890899090501481880553750048136836870884603174737258837536327019963547476613035420193242235958864072191310211266838717111661997427211841/12783023398347182527827266018084853816957200656157619091697324616742311416562635878138877885624375648451124252631313246023565032594958723217156852099448525246163841224826411142995465781449933126471565499798220839478711429677894215928528292236102437738794735041394169037587748216329172674503676092635013243513956191777512617477410093746925179270789799799730622660030591675421202657460636108162287751302960943869968913813325046169997043772342157085218554306312985106537613401231207976326724988859476336984672406885195040794203847330242433365742552373654979358945002716296795012089964903361152261366391404266655146662893639909527290366617866506582171668070515994523610832306450008266431269003118182047583885430847933151052510615009202218201565396160109891612720037130379898475920086484652151956991604426033029658056751848837425303431551801208892841314590791792220391324039190954484617279688851805266578965829309800110769876363469478392*x^8+595653463870329564049793978610653077784924147310081049725886229514496074424431896371139535290512513543370421669991943879022295484566837982193741714293063648577558130603631634766521328149129569969823197271545558633437311107596551672056665506079114364599202039865730405948002218769139583348447586421596752286092282439204649127363793862275710130284296695116082940485912870421340555598970364233037216088883415900477944075155274644931796851988347845481689494432787436457416213309975377477034435315885301330073984386960225656990818706334595431458471582550550165189482320607945492496296417100187628303765229872504055798768101834332864953805589825320224343693907336414200688255911370715097612333973794836212429385145521765825313810064172829130430532871221590834385381629229656091998869097712301634818490602700217107948854487937370243140870821241350717775059492175130737668904369695266161667460527553083982270988490551570900042454610585889/12783023398347182527827266018084853816957200656157619091697324616742311416562635878138877885624375648451124252631313246023565032594958723217156852099448525246163841224826411142995465781449933126471565499798220839478711429677894215928528292236102437738794735041394169037587748216329172674503676092635013243513956191777512617477410093746925179270789799799730622660030591675421202657460636108162287751302960943869968913813325046169997043772342157085218554306312985106537613401231207976326724988859476336984672406885195040794203847330242433365742552373654979358945002716296795012089964903361152261366391404266655146662893639909527290366617866506582171668070515994523610832306450008266431269003118182047583885430847933151052510615009202218201565396160109891612720037130379898475920086484652151956991604426033029658056751848837425303431551801208892841314590791792220391324039190954484617279688851805266578965829309800110769876363469478392*x^7-15113570599033390421079877152704282575760402634458053122854896745489277827307511104729555317925906225568214914439058228407909604233709303373800635755523163622556864164238666772567187619354483299953911709839860063588020162857990784248028866643232820765874877631054265552390768506568101602491000432124326227024341745780450739624272135251182271133507810838226637332261885858935760923125210938994349370924860536080811884391229918127119531006177386365479201266087848843332916814370814507988299037716701840225002363896766748196913932600780960329893902502167652386550281812383391521738502785942278676540705757260537410521405647255640494560579216704794939121721257870245415144651904709474211768371408204914862883986252875760943819790296200235921138992713190368600609580449924683146430563973244161071950255162230256773426228399168919888429747422610165410976294531879556935995391906949049683251359274465900646212494068580346654890616742327/25566046796694365055654532036169707633914401312315238183394649233484622833125271756277755771248751296902248505262626492047130065189917446434313704198897050492327682449652822285990931562899866252943130999596441678957422859355788431857056584472204875477589470082788338075175496432658345349007352185270026487027912383555025234954820187493850358541579599599461245320061183350842405314921272216324575502605921887739937827626650092339994087544684314170437108612625970213075226802462415952653449977718952673969344813770390081588407694660484866731485104747309958717890005432593590024179929806722304522732782808533310293325787279819054580733235733013164343336141031989047221664612900016532862538006236364095167770861695866302105021230018404436403130792320219783225440074260759796951840172969304303913983208852066059316113503697674850606863103602417785682629181583584440782648078381908969234559377703610533157931658619600221539752726938956784*x^6-56606911212746288531797425095670805062399424421101677717862600827392887966086570498590673119613746469165156337523381795636321677036991477302420753674709713686811882568078016975400881624969306258459062007649906773777809876859663876646222545569178638387083155806346202130570988684784830435390865363436508319229238598519437586054312503598853928438972636264615238650707643552964679259318243634317570183872115416681752259271751432389553718574295517207917784228757458885377537383478835886996256222286223854172678118278099547239528535908757605400918412542872093301940268914810937904361836991602742563582312675452630601354931494058266771375234065791092815667038632389781434772470040614489288147052306960907419599693648698532033457556243783702691074860973568369668485091260383950009098762596509973546964151952489551510210947116627078116642234793376887344063164400839769932275480710548974537201716359604788112690110055153211687060319915667/25566046796694365055654532036169707633914401312315238183394649233484622833125271756277755771248751296902248505262626492047130065189917446434313704198897050492327682449652822285990931562899866252943130999596441678957422859355788431857056584472204875477589470082788338075175496432658345349007352185270026487027912383555025234954820187493850358541579599599461245320061183350842405314921272216324575502605921887739937827626650092339994087544684314170437108612625970213075226802462415952653449977718952673969344813770390081588407694660484866731485104747309958717890005432593590024179929806722304522732782808533310293325787279819054580733235733013164343336141031989047221664612900016532862538006236364095167770861695866302105021230018404436403130792320219783225440074260759796951840172969304303913983208852066059316113503697674850606863103602417785682629181583584440782648078381908969234559377703610533157931658619600221539752726938956784*x^5+8803574970613871156806085396512138961742521948396413545070976399600915984183390805096731313217646981222548657773275592950616488668094770447693809833164459043946592009996136155728311094386907899766270966922695038949490311577603551489122618956774441280490375954836897874880872800831317477259323488993074897412948399841956182103363590355763668471507912443956969097316815558683861211173548132219642059999985419005273573000030449164050583320511714605312903276113074336198985650814714729654266427222607355408552351971127995723711943667875256201812876969068878200785868067258284670407922968682007482594553643052049155554750878922972932169341172726102387357444748432711229584365031020816215817387958789462262033872746673386146274342628377930132499351532652360977700457249013199924702013517630294342824985973844030539327838892887509452469632329879859377436506301311966132764081878323235415242489663285064434254301628330944024796246782645/25566046796694365055654532036169707633914401312315238183394649233484622833125271756277755771248751296902248505262626492047130065189917446434313704198897050492327682449652822285990931562899866252943130999596441678957422859355788431857056584472204875477589470082788338075175496432658345349007352185270026487027912383555025234954820187493850358541579599599461245320061183350842405314921272216324575502605921887739937827626650092339994087544684314170437108612625970213075226802462415952653449977718952673969344813770390081588407694660484866731485104747309958717890005432593590024179929806722304522732782808533310293325787279819054580733235733013164343336141031989047221664612900016532862538006236364095167770861695866302105021230018404436403130792320219783225440074260759796951840172969304303913983208852066059316113503697674850606863103602417785682629181583584440782648078381908969234559377703610533157931658619600221539752726938956784*x^4-523859084082833471446711755599121052886811016364975130659544060359420880174405546029952820794428450698789941159230333192978458494119123793478183362395347411263910209528686607499619732076210935923583757530528475415340759837176163831540648474842441088111430598419604346899579186230546208967364447721656454914767406049990213818512260948866882128853891871133892169918212832229057031510780243573302325692630372815883421975596513331009467248542883004381175675544983224650496679943101389848155364127861671314139401868335830005933182296640353260635533021407833519995789902759067978323853832610509380765976726389069758315717268633025536104645794437969501284514833324641003339055262908646594490675898481723072173169073269959496697492841280565500876977601579793290422081302241207973528760098915143648721380740535972297119460582597942660098036955825437773842971660604713909242648770501670101799996143752912217696962275386368069113806310933/25566046796694365055654532036169707633914401312315238183394649233484622833125271756277755771248751296902248505262626492047130065189917446434313704198897050492327682449652822285990931562899866252943130999596441678957422859355788431857056584472204875477589470082788338075175496432658345349007352185270026487027912383555025234954820187493850358541579599599461245320061183350842405314921272216324575502605921887739937827626650092339994087544684314170437108612625970213075226802462415952653449977718952673969344813770390081588407694660484866731485104747309958717890005432593590024179929806722304522732782808533310293325787279819054580733235733013164343336141031989047221664612900016532862538006236364095167770861695866302105021230018404436403130792320219783225440074260759796951840172969304303913983208852066059316113503697674850606863103602417785682629181583584440782648078381908969234559377703610533157931658619600221539752726938956784*x^3+2507277613118701025793992364166478343634113591260892474295326766388926595401380659553418488612372800473078429284383414164100295497618696922175584194648519640315288543669474665647481253042089841838880845698663503017597568567494036511285649062160850714939388491186949845790680376696816908809272981412907183537044694180946810281215322367828144494392069154586949731736984686662811664798321227156168742191864566896432033615316362529844704143667580907339601101101040983407725340793380960622046484034595588591168465069176540166697625520589666927661660285415510869031443183270437121086747446353056448389264226941586709914236711688346438937447603056458249768319677721039404318822571940087776493501534291441156924207226385372828419997653921508823109486892013281164698869726954506626852453903751862417478762888542286370388085783793727357089951716036021380037300853575906423073257325966464463919011630179868083502189793561658823882854823/5681343732598747790145451563593268363092089180514497374087699829663249518472282612506167949166389177089388556725028109343806681153314988096514156488643788998295040544367293841331318125088859167320695777688098150879427302079064095968234796549378861217242104462841852905594554762812965633112744930060005886006202751901116718878848930554188968564795466577658054515569151855742756736649171603627683445023538197275541739472588909408887575009929847593430468580583548936238939289436092433922988883937545038659854403060086684797423932146774414829218912166068879715086667873909686672039984401493845449496173957451846731850174951070901017940719051780703187408031340442010493703247311114785080564001385858687815060191487970289356671384448534319200695731626715507383431127613502177100408927326512067536440713078236902070247445266149966801525134133870619040584262574129875729477350751535326496568750600802340701762590804355604786611717097545952*x^2+409625955662068882951029126793688739518090138239218488984796795645801325262353406586076439055165056320023643100727785301142632216544301080743235707086824485890205950529700657617438269917459707919268974737411575302005751244657214481075183329087253965790410699412397427442839741206848483871370551438808586427029387351271518650463772184256590372936207478553171485915519400489218737299828282527927029698794411869349982447984333764576483854239683590209335608900236726346302994114690056427772581682505305971250477006390651418491364024408115184552516886617401858022820021648328348447629622760279509245058592997481694825738991388860444669425663371096552711454623191875274037228193231324209339530305072938805229134963657645497492583194974100090696050921013395443204011245764738501052755929663789410609492539391491688417079601608018345617616844409309669918907009896517735188492371103865855756475811783862809885417127411425999146175/25566046796694365055654532036169707633914401312315238183394649233484622833125271756277755771248751296902248505262626492047130065189917446434313704198897050492327682449652822285990931562899866252943130999596441678957422859355788431857056584472204875477589470082788338075175496432658345349007352185270026487027912383555025234954820187493850358541579599599461245320061183350842405314921272216324575502605921887739937827626650092339994087544684314170437108612625970213075226802462415952653449977718952673969344813770390081588407694660484866731485104747309958717890005432593590024179929806722304522732782808533310293325787279819054580733235733013164343336141031989047221664612900016532862538006236364095167770861695866302105021230018404436403130792320219783225440074260759796951840172969304303913983208852066059316113503697674850606863103602417785682629181583584440782648078381908969234559377703610533157931658619600221539752726938956784*x+19274602981612147290159524985559484093130831751480756525782715054667194973369495232408312165313759674110576759872392612089012272923859625516884268120491350321412487913144106351173483928355210063578761326082759699790669852993610922334255512904908344034497486576749204467479440080193445816812437124815705534871107288254095868559730608571611775333291508638854525168655723328657110979842065373668113720199606612577706540055748716804695554224139209569128003744375141059759616450648545383218233710479963101078863006113802889357950673977857921892481030024186104599766895886493039433820102404772715112824244120718747330555481069366856972350416806635004205386220265273799023113455715583543586661235789661857624566216488236144677299497354093058902257519792639035715396313400079080186425228931237501312897851917238249279942091650204339882709384865082513445071486731865811778705191906577495950612446972346017024882968602859856464/1597877924793397815978408252260606727119650082019702386462165577092788927070329484767359735703046956056390531578914155752945629074369840402144606512431065655770480153103301392874433222681241640808945687474777604934838928709736776991066036529512804717349341880174271129698468527041146584312959511579376655439244523972189077184676261718365647408848724974966327832503823959427650332182579513520285968912870117983746114226665630771249630471542769635652319288289123138317201675153900997040840623607434542123084050860649380099275480916280304170717819046706872419868125339537099376511245612920144032670798925533331893332861704988690911295827233313322771458508814499315451354038306251033303908625389772755947985678855991643881563826876150277275195674520013736451590004641297487309490010810581518994623950553254128707257093981104678162928943975151111605164323848974027548915504898869310577159961106475658322370728663725013846234545433684799:

fsolve(P,complex);

2 3 4 5 6 7 8 Last Page 4 of 13