## Solutions for each value of omega...

I have an equation as shown below.  In this i need to get the value of 'a' for each 'omega'.  'omega' range from 0 to 2 with increment 0.01

And save all the values of 'a' as a column matrix named 'result'.

## Why different results?...

Dear all,

I developed a program to solve f(x, y) = 0 and g(x, y) = 0, I obtained as results (x=2.726, y=2.126) . running the same program another time it gives (x=2.762, y=1.992). how to explain this?

> fsolve({f(x, y) = 0, g(x, y) = 0}, {x = 0 .. infinity, y= 0 .. infinity});

## fsolve did not return the result...

I tried to solve a system of two equations using fsolve in Maple, however Maple didn't return any result (yet there is the result of that equation's system):

Maple is returning the command if there are no roots but that isn't my case.

How can I obtain the result in Maple?

worksheet.mw

## Exporting to Excel...

I want to solve a system of equations using f-solve (two unknowns) and exporting the solutions to a matrix where the solutions are in seperate columns. How do I do this?

I have tried:

for i from 1 to 937 do

AP[i,1]:=fsolve(x=KL[i,1].y=KL[i,2],x=..8,y=0..15))

end if

end do

But this returns the solutions for X and Y in the same column. Also, for the values that are not possible to solve, it returns the entire expression instead of e.g. 0 or "undefined".

Thank you.

## Why can't fsolve solve it?...

It returns unevaluated.  The solution is x=-ln(3),y=0.  In fact it doesn't give a solution even if the solution is provided as the initial point.  The value of Digits doesn't seem to make a difference.

(Tested Maple 2015.2 Macintosh and Maple 2015.1 Linux)

## Problem when solving equations...

Hello dears! Hope everything going fine with you. I have faced problem while solving the system of equations using fsolve command please find the attacment and fixed my problem.

I am very thankful to you for this favour.

VPM_Help.mw

Mob #: 0086-13001903838

## All roots of equation...

hi.i trust that attached equation has more answer but fsolve only gain some of them!!! how i can gain another that i know value of them?

another root  that i known, are : 0.165237712988657e-1    and     .103583272213766    and    .290071279318035

thanks

root.mw

## Problem with Determinant...

hi.after calculate Determinant of matrix  and gain value omega'' ω'' by fsolve rule ,when substuting result (ω) in matrix (q) and calculate Determinant again, this value is not zero!!!! may i use LUDecomposition?determinan.mw

## Finding a numerical solution to system of equation...

I have a system of equations in several variables and I just need one numerical solution of it, I tryed to use fsolve of Maple but it always show me some errors or gives back the command as the output.

aaghulu := {-6-4*y-x-(1+y)*x+sqrt((4*(1+y))*(2+x)*(4+2*y+x)+(-(1+y)*x+2+x)^2), (2*(4+2*y+x))*(1+y)-(1+y)*x+2+x+sqrt((4*(1+y))*(2+x)*(4+2*y+x)+(-(1+y)*x+2+x)^2)-(2+y)*(-(1+y)*x+2+x+sqrt((4*(1+y))*(2+x)*(4+2*y+x)+(-(1+y)*x+2+x)^2))};

fsolve(aaghulu, {x, y}, maxsols = 1);

I will be happy if someone guide me how to do these kinds of things using Maple.

## Understanding output of fsolve...

I am trying to solve 4 nonlinear equations for four variables using fsolve  and the output that i am getting is basically the same equations repeated after some time.  I even tried reducing one of the equations using assumptions from my side but it results in same behaviour..  Quite new to maple, would like some advice as to this behaviour. Thanks

Here's the file

fsolve_1.mw

PS- using do loop is part of the solving so i cannot remove that

## How to solve this equation?...

Hi all

How I use "solve" or "fsolve" for this equation ?

M2 := evalf[4](Matrix(4, 4, {(1, 1) = BesselJ(0, 0.5e-1*sqrt(0.1111111111e-16*omega^2-25.00027778)), (1, 2) = -BesselJ(0, 0.5e-1*sqrt(0.4444444445e-16*omega^2-25)), (1, 3) = -BesselY(0, 0.5e-1*sqrt(0.4444444445e-16*omega^2-25)), (1, 4) = 0, (2, 1) = (0.1111111111e-16*I)*omega*(1-25000000000000/omega^2)*BesselJ(1, 0.5e-1*sqrt(0.1111111111e-16*omega^2-25.00027778))/sqrt(0.1111111111e-16*omega^2-25.00027778), (2, 2) = -(0.4444444444e-16*I)*BesselJ(1, 0.5e-1*sqrt(0.4444444445e-16*omega^2-25))/sqrt(0.4444444445e-16*omega^2-25), (2, 3) = (0.4444444444e-16*I)*BesselY(1, 0.5e-1*sqrt(0.4444444445e-16*omega^2-25))/sqrt(0.4444444445e-16*omega^2-25), (2, 4) = 0, (3, 1) = 0, (3, 2) = BesselJ(0, 0.60e-1*sqrt(0.4444444445e-16*omega^2-25)), (3, 3) = BesselY(0, 0.60e-1*sqrt(0.4444444445e-16*omega^2-25)), (3, 4) = -BesselY(0, 0.60e-1*sqrt(0.1111111111e-16*omega^2-25)), (4, 1) = 0, (4, 2) = (0.4444444444e-16*I)*BesselJ(1, 0.60e-1*sqrt(0.4444444445e-16*omega^2-25))/sqrt(0.4444444445e-16*omega^2-25), (4, 3) = (0.4444444444e-16*I)*BesselY(1, 0.60e-1*sqrt(0.4444444445e-16*omega^2-25))/sqrt(0.4444444445e-16*omega^2-25), (4, 4) = -(0.1111111111e-16*I)*omega*BesselY(1, 0.60e-1*sqrt(0.1111111111e-16*omega^2-25))/sqrt(0.1111111111e-16*omega^2-25)})):

with(LinearAlgebra):
DETM2 := Determinant(M2):
solve(DETM2 = 0, omega);

Error, (in solve) cannot solve for an unknown function with other operations in its arguments

Is this Error because of combination of bessel functions? if I use asymptatic forms, does it work?

Thanks

## Creating matrix of fsolve output...

Hi Please I need help with making the output of my fslolve appear in a way that I can easily copy to an excel.

I am doing analysis for 3 countries and each time I produce a result I copy manually to excel and use 'text to column' and the 'transpose' excel options to arrange the results in order. I do this for almost 20 time because I want to see how hows in parameter affect the variables. is there a way I can convert this to a 32 by 3 matrix so that I can copy all at the same time instead of copying each variable at a time. here is my solve command

UK_SOL_FIRST:= fsolve(eval({eq||(1..32)}, Params_UK_FIRST), InitValue_UK_FIRST);
ES_SOL_FIRST:= fsolve(eval({eq||(1..32)}, Params_ES_FIRST), InitValue_ES_FIRST);
DK_SOL_FIRST:= fsolve(eval({eq||(1..32)}, Params_DK_FIRST), InitValue_DK_FIRST);

The Results

UK_SOL_FIRST:={A_ss = 14.36104896, C_ss = 1.445842138, I_ss = 0.3136706500,

K_ss = 12.54682600, K_v_ss = 125.4682600,

LT_ss = 0.01061009037, L_ss = 4.014721807, N_ss = 0.9307582996,

P_a_ss = 0.9336893751, P_ss = 0.8625403648,

Surp = 0.9890479879, U_b_ss = 0.1781599919,

U_ss = 0.1046105158, V_ss = 0.05052687912, W_max = 1.476989982,

W_min = 0.4879419937, W_ss = 1.826907218,

W_tilde = 3.478049987, Y_ss = 2.428417935, aa_ss = 21.67403493,

chhi = 0.4523413798, f_c_ss = 0.04880034560,

m_ss = 0.03536881539, p_d_ss = 0.9907986980,

x_T = 0.7023268636, y_d_ss = 10.57030302, y_f_ss = 1.174478111,

y_x_ss = 10.57030300, z_ss = 21.14060602,

Profit_ss = 4.094720376, phi_prod = 0.9753885739,

theta_ss = 0.4830000000}

ES_SOL_FIRST:={A_ss = 10.91702785, C_ss = 2.038687975, I_ss = 0.3058575000,

K_ss = 12.23430000, LT_ss = 0.1309315222, L_ss = 2.857497927,

N_ss = 0.8398656215, P_a_ss = 0.9680877046,

P_ss = 0.8638978804, Surp = 2.541617932, U_b_ss = 0.9095925505,

U_ss = 0.1819708847, V_ss = 0.03119500880, W_max = 3.252738093,

W_min = 0.7111201606, W_ss = 3.605202340,

W_tilde = 3.665280790, Y_ss = 2.367929032, aa_ss = 15.67939783,

betta = 0.9909865708, chhi = 0.2898275349,

f_c_ss = 0.6743530978, m_ss = 0.02183650616,

p_d_ss = 0.9939322922, x_T = 0.005556307841,

y_d_ss = 7.853422751, y_f_ss = 1.195945300,

y_x_ss = 7.978400682, z_ss = 15.83182343,

Profit_ss = 3.084421270, phi_prod = 1.009721394,

theta_ss = 0.1714285714}

DK_SOL_FIRST:={A_ss = 16.18893837, C_ss = 1.359886068, I_ss = 0.2487000000,

K_ss = 9.948000000, LT_ss = 0.02282780783, L_ss = 5.834365727,

N_ss = 0.9399351536, P_a_ss = 0.7054445707,

P_ss = 0.8796237740, Surp = 0.6511024854,

U_b_ss = 0.4572819488, U_ss = 0.08450316042,

V_ss = 0.03491187713, W_max = 1.293898615,

W_min = 0.6427961298, W_ss = 2.363825013,

W_tilde = 2.758200925, Y_ss = 1.755529412, aa_ss = 34.56310241,

betta = 0.9851712031, chhi = 0.4499333284,

f_c_ss = 0.1898151486, m_ss = 0.02443831399,

p_d_ss = 1.032636460, x_T = 0.1506134910, y_d_ss = 11.17773688,

y_f_ss = 0.9144278497, y_x_ss = 13.74561008,

z_ss = 24.92334696, Profit_ss = 4.926248216,

phi_prod = 0.7210969276, theta_ss = 0.4131428571}

## How to solve for variable xx?...

InputMatrix3aa := Matrix(3, 3, {(1, 1) = xx, (1, 2) = 283.6, (1, 3) = 285.4, (2, 1) = 283.6, (2, 2) = 285.4, (2, 3) = 0, (3, 1) = 285.4, (3, 2) = 0, (3, 3) = 0});
InputMatrix3 := Matrix(3, 3, {(1, 1) = 283.6, (1, 2) = 285.4, (1, 3) = 283.0, (2, 1) = 285.4, (2, 2) = 283.0, (2, 3) = 0, (3, 1) = 283.0, (3, 2) = 0, (3, 3) = 0});
InputMatrix3b := Matrix(3, 3, {(1, 1) = 285.4, (1, 2) = 283.0, (1, 3) = 287.6, (2, 1) = 283.0, (2, 2) = 287.6, (2, 3) = 0, (3, 1) = 287.6, (3, 2) = 0, (3, 3) = 0});
InputMatrix3c := Matrix(3, 3, {(1, 1) = 283.0, (1, 2) = 287.6, (1, 3) = 296.6, (2, 1) = 287.6, (2, 2) = 296.6, (2, 3) = 0, (3, 1) = 296.6, (3, 2) = 0, (3, 3) = 0});
InputMatrix3d := Matrix(3, 3, {(1, 1) = 287.6, (1, 2) = 296.6, (1, 3) = 286.2, (2, 1) = 296.6, (2, 2) = 286.2, (2, 3) = 0, (3, 1) = 286.2, (3, 2) = 0, (3, 3) = 0});

Old_Asso_eigenvector0 := Eigenvectors(MatrixMatrixMultiply(Transpose(InputMatrix3aa), InputMatrix3aa)):
Old_Asso_eigenvector1 := Eigenvectors(MatrixMatrixMultiply(Transpose(InputMatrix3), InputMatrix3)):
Old_Asso_eigenvector2 := Eigenvectors(MatrixMatrixMultiply(Transpose(InputMatrix3b), InputMatrix3b)):
Old_Asso_eigenvector3 := Eigenvectors(MatrixMatrixMultiply(Transpose(InputMatrix3c), InputMatrix3c)):
Old_Asso_eigenvector4 := Eigenvectors(MatrixMatrixMultiply(Transpose(InputMatrix3d), InputMatrix3d)):

#AA2 := MatrixMatrixMultiply(Old_Asso_eigenvector3[2], MatrixInverse(Old_Asso_eigenvector2[2]));
#AA3 := MatrixMatrixMultiply(Old_Asso_eigenvector4[2], MatrixInverse(Old_Asso_eigenvector3[2]));

AA2 := MatrixMatrixMultiply(Old_Asso_eigenvector2[2], MatrixInverse(Old_Asso_eigenvector1[2]));
AA3 := MatrixMatrixMultiply(Old_Asso_eigenvector3[2], MatrixInverse(Old_Asso_eigenvector2[2]));

sol11 := solve([Re(AA2[1][1]) = sin(m*2+phi), Re(AA3[1][1]) = sin(m*3+phi)], [m,phi]);
if nops(sol11) > 1 then
sol11 := sol11[1];
end if:
sin(rhs(sol11[1])+rhs(sol11[2]));

sol12 := solve([Re(AA2[1][2]) = sin(m*2+phi), Re(AA3[1][2]) = sin(m*3+phi)], [m,phi]);
if nops(sol12) > 1 then
sol12 := sol12[1];
end if:
sin(rhs(sol12[1])+rhs(sol12[2]));

sol13 := solve([Re(AA2[1][3]) = sin(m*2+phi), Re(AA3[1][3]) = sin(m*3+phi)], [m,phi]);
if nops(sol13) > 1 then
sol13 := sol13[1];
end if:
sin(rhs(sol13[1])+rhs(sol13[2]));

#*************************************
sol21 := solve([Re(AA2[2][1]) = sin(m*2+phi), Re(AA3[2][1]) = sin(m*3+phi)], [m,phi]);
if nops(sol21) > 1 then
sol21 := sol21[1];
end if:
sin(rhs(sol21[1])+rhs(sol21[2]));

sol22 := solve([Re(AA2[2][2]) = sin(m*2+phi), Re(AA3[2][2]) = sin(m*3+phi)], [m,phi]);
if nops(sol22) > 1 then
sol22 := sol22[1];
end if:
sin(rhs(sol22[1])+rhs(sol22[2]));

sol23 := solve([Re(AA2[2][3]) = sin(m*2+phi), Re(AA3[2][3]) = sin(m*3+phi)], [m,phi]);
if nops(sol23) > 1 then
sol23 := sol23[1];
end if:
sin(rhs(sol23[1])+rhs(sol23[2]));

#**************************************
sol31 := solve([Re(AA2[3][1]) = sin(m*2+phi), Re(AA3[3][1]) = sin(m*3+phi)], [m,phi]);
if nops(sol31) > 1 then
sol31 := sol31[1];
end if:
sin(rhs(sol31[1])+rhs(sol31[2]));

sol32 := solve([Re(AA2[3][2]) = sin(m*2+phi), Re(AA3[3][2]) = sin(m*3+phi)], [m,phi]);
if nops(sol32) > 1 then
sol32 := sol32[1];
end if:
sin(rhs(sol32[1])+rhs(sol32[2]));

sol33 := solve([Re(AA2[3][3]) = sin(m*2+phi), Re(AA3[3][3]) = sin(m*3+phi)], [m,phi]);
if nops(sol33) > 1 then
sol33 := sol33[1];
end if:
sin(rhs(sol33[1])+rhs(sol33[2]));

#****************************************************

AAA1 := Matrix([[sin(rhs(sol11[1])+rhs(sol11[2])),sin(rhs(sol12[1])+rhs(sol12[2])),sin(rhs(sol13[1])+rhs(sol13[2]))],[sin(rhs(sol21[1])+rhs(sol21[2])),sin(rhs(sol22[1])+rhs(sol22[2])),sin(rhs(sol23[1])+rhs(sol23[2]))],[sin(rhs(sol31[1])+rhs(sol31[2])),sin(rhs(sol32[1])+rhs(sol32[2])),sin(rhs(sol33[1])+rhs(sol33[2]))]]);

MA := MatrixMatrixMultiply(Transpose(InputMatrix3aa), InputMatrix3aa) - lambda*IdentityMatrix(3):
eignvalues1 := evalf(solve(Determinant(MA), lambda)):
MA1 := MatrixMatrixMultiply(Transpose(InputMatrix3aa), InputMatrix3aa) - eignvalues1[1]*IdentityMatrix(3):
MA2 := MatrixMatrixMultiply(Transpose(InputMatrix3aa), InputMatrix3aa) - eignvalues1[2]*IdentityMatrix(3):
MA3 := MatrixMatrixMultiply(Transpose(InputMatrix3aa), InputMatrix3aa) - eignvalues1[3]*IdentityMatrix(3):
eigenvector1 := LinearSolve(MA1,<x,y,z>):
eigenvector2 := LinearSolve(MA2,<x,y,z>):
eigenvector3 := LinearSolve(MA3,<x,y,z>):

MR := MatrixMatrixMultiply(AAA1, Matrix([[Re(eigenvector1[1]),Re(eigenvector2[1]),Re(eigenvector3[1])],[Re(eigenvector1[2]),Re(eigenvector2[2]),Re(eigenvector3[2])],[Re(eigenvector1[3]),Re(eigenvector2[3]),Re(eigenvector3[3])]]));
ML := Re(Old_Asso_eigenvector1[2]);

solve(ML[1][1] = MR[1][1], xx);
with(Optimization):
Minimize(ML[1][1] - MR[1][1], {0 <= xx}, assume = nonnegative);

Error, (in Optimization:-NLPSolve) abs is not differentiable at non-real arguments;

## Error when fsolving ...

Error, (in fsolve/polynom) Digits cannot exceed 38654705646

I am using fsolve to find numerical approximations to the roots of many fairly large polynomials (degrees up to ~80).  I often get this error message and I'm not sure why.  Is there any workaround?  Any help is much appreciated.

## Complex solution...

This may be a trivial question, but does this factor fully with the newer versions of Maple, say at 900 digits?

Digits:=900;

rho_poly := -2201506283520*rho^32+(-17612050268160+104204630753280*I)*rho^31+(2237195146493952+737798139150336*I)*rho^30+(14065203494780928-29153528496783360*I)*rho^29+(-260893325886750720-161432056834818048*I)*rho^28+(-1240991775275876352+1727517243589263360*I)*rho^27+(8952004373272068096+6696323263091441664*I)*rho^26+(25553042370906292224-37948239682297921536*I)*rho^25+(-135024511500569280512-65293199430849134592*I)*rho^24+(-79740262928225402880+401487130320847241216*I)*rho^23+(956745211126674882560-164797793704574713856*I)*rho^22+(-1213375867282228772864-1655554058430246551552*I)*rho^21+(-1483956336776821211136+3604946201834409820160*I)*rho^20+(6525094787202650144768-1597915397190007586816*I)*rho^19+(-8575469412912592879616-6168391294117580865536*I)*rho^18+(2408139380338842796032+15004449784317106323456*I)*rho^17+(10583091471310114717696-17047513330720373194752*I)*rho^16+(-22619716982813548707840+8898637295768494915584*I)*rho^15+(26538067620972845277184+5129530051326543351808*I)*rho^14+(-21415800164460070789120-17268159356969925234688*I)*rho^13+(11916012071577094946816+22601135173030541677568*I)*rho^12+(-3551246770922037813248-21229478915196610975744*I)*rho^11+(-977434486760953073664+16249214903618313346048*I)*rho^10+(1977414870691507931136-10721551032564274826240*I)*rho^9+(-1197394212949208115968+6172794574205050632192*I)*rho^8+(280273257275327368320-2996290081120136529792*I)*rho^7+(108849195761508531648+1152454823926345101504*I)*rho^6+(-119736267114490955904-327757949185254534784*I)*rho^5+(49149411853848597568+63563541902968683712*I)*rho^4+(-11524495997215059744-7307364351434838944*I)*rho^3+(1585189353379709888+299568910286253408*I)*rho^2+(-116032795768295808+25487628220230528*I)*rho+3299863116538269-2454681763039104*I;;

 2 3 4 5 6 7 8 Last Page 4 of 13
﻿