## ELgamal procedure...

Hi I was wondering if anyone can help me with the following procedure, i am trying to write a procedure that can encrypt/decrypt messages encrypted using the method of ELGamal my current procedure runs but it takes too long to compute, and it can only decrypt.

My procedure is as follows:

my procedure for part c is as follows it seems to run but it takes a long time to carry out the procedure when i try to decrypt.

Elgamal := proc (ciphy, hkt, p, a, b)
local i, icdarray, s, q;
icdarray := Array(5 .. 388);
for i from 5 to 388 do
s := ciphy[i];
q := `mod`(1/hkt^proc3(a, b, p), p);
icdarray[i] := s*q;
end do;
return convert(icdarray, bytes);
end proc;

where proc3 is as follows

proc3 := proc (alpha, beta, p)
local k, R, i, j, N, A, t;
Description "baby step giant step procedure";
N := floor(sqrt(p-1))+1;
A := Array(0 .. N);
for j from 0 to N do
A[j] := `mod`(alpha&^j, p);
end do;
for i from 0 to N do
t := `mod`(beta*alpha&^(-N*i), p);
for k from 0 to N do
if t = A[k]
then return k+N*i;
end if;
end do;
end do;
end proc;

ciphertext:
[12432485341, 2579085006, 13736574369, 4105371047, 9573017222,

7824534168, 10017411248, 13292180343, 2356887993, 9573017222,

10017411248, 13765667419, 9795214235, 10017411248, 2801282019,

608404939, 4105371047, 13765667419, 11572790339, 13765667419,

11765894302, 10017411248, 13765667419, 4549765073, 10017411248,

13736574369, 2579085006, 4549765073, 10017411248, 4549765073,

13765667419, 2801282019, 830601952, 4105371047, 10017411248,

7824534168, 13765667419, 13736574369, 2801282019, 7824534168,

10017411248, 830601952, 9573017222, 4327568060, 13765667419,

6076051114, 8268928194, 13292180343, 10017411248, 7824534168,

386207926, 2801282019, 4105371047, 2579085006, 6076051114,

608404939, 13765667419, 6076051114, 830601952, 13765667419,

4105371047, 11765894302, 10017411248, 13765667419, 13292180343,

13736574369, 10017411248, 608404939, 10017411248, 7824534168,

2134690980, 13765667419, 4105371047, 11765894302, 2801282019,

4105371047, 13765667419, 2579085006, 608404939, 13292180343,

11543697289, 2579085006, 7824534168, 10017411248, 4549765073,

13765667419, 4994159099, 5853854101, 6076051114, 830601952,

4327568060, 6076051114, 5853854101, 10017411248, 7824534168,

13765667419, 4105371047, 6076051114, 13765667419, 9573017222,

13292180343, 10017411248, 13765667419, 4105371047, 11765894302,

10017411248, 13765667419, 5853854101, 6076051114, 7824534168,

4549765073, 13765667419, 11572790339, 13765667419, 4105371047,

11765894302, 2801282019, 4105371047, 13765667419, 4105371047,

11765894302, 10017411248, 13765667419, 4327568060, 2801282019,

608404939, 4549765073, 13292180343, 13736574369, 2801282019,

11543697289, 10017411248, 13765667419, 5853854101, 2801282019,

13292180343, 13765667419, 11765894302, 6076051114, 7824534168,

7824534168, 2579085006, 8268928194, 4327568060, 2134690980,

13765667419, 11543697289, 7824534168, 10017411248, 13736574369,

2579085006, 11543697289, 2579085006, 4105371047, 6076051114,

9573017222, 13292180343, 2385981043, 13765667419, 3245676045,

9573017222, 2801282019, 2579085006, 608404939, 4105371047,

6105144164, 13765667419, 5853854101, 11765894302, 10017411248,

608404939, 13765667419, 9573017222, 13292180343, 10017411248,

4549765073, 13765667419, 4105371047, 6076051114, 13765667419,

4549765073, 10017411248, 13292180343, 13736574369, 7824534168,

2579085006, 8268928194, 10017411248, 13765667419, 4105371047,

11765894302, 10017411248, 13765667419, 6076051114, 13736574369,

13736574369, 2801282019, 13292180343, 2579085006, 6076051114,

608404939, 2801282019, 4327568060, 13765667419, 386207926,

2579085006, 4327568060, 4327568060, 2801282019, 6298248127,

10017411248, 13765667419, 4105371047, 11765894302, 7824534168,

6076051114, 9573017222, 6298248127, 11765894302, 13765667419,

5853854101, 11765894302, 2579085006, 13736574369, 11765894302,

13765667419, 4105371047, 11765894302, 10017411248, 2134690980,

13765667419, 11543697289, 2801282019, 13292180343, 13292180343,

10017411248, 4549765073, 6105144164, 13765667419, 9795214235,

10017411248, 2801282019, 608404939, 4105371047, 13765667419,

830601952, 10017411248, 386207926, 10017411248, 7824534168,

11572790339, 7824534168, 2579085006, 4549765073, 4549765073,

10017411248, 608404939, 13765667419, 2801282019, 608404939,

4549765073, 13765667419, 4105371047, 9573017222, 9795214235,

8268928194, 4327568060, 10017411248, 4549765073, 6076051114,

5853854101, 608404939, 2385981043, 13765667419, 4994159099,

5853854101, 6076051114, 830601952, 4327568060, 6076051114,

5853854101, 10017411248, 7824534168, 13765667419, 5853854101,

2801282019, 13292180343, 13765667419, 2801282019, 13765667419,

4105371047, 6076051114, 9573017222, 7824534168, 2579085006,

13292180343, 4105371047, 6105144164, 13765667419, 4105371047,

11765894302, 10017411248, 13765667419, 830601952, 2579085006,

7824534168, 13292180343, 4105371047, 13765667419, 10017411248,

386207926, 10017411248, 7824534168, 13765667419, 13292180343,

10017411248, 10017411248, 608404939, 13765667419, 6076051114,

608404939, 13765667419, 4105371047, 11765894302, 10017411248,

13765667419, 5438553125, 2579085006, 13292180343, 13736574369,

5853854101, 6076051114, 7824534168, 4327568060, 4549765073,

2385981043, 13765667419, 4994159099, 6076051114, 9573017222,

7824534168, 2579085006, 13292180343, 4105371047, 6105144164,

13765667419, 8713322220, 2579085006, 608404939, 13736574369,

10017411248, 5853854101, 2579085006, 608404939, 4549765073,

13765667419, 11765894302, 2801282019, 4549765073, 13765667419,

4549765073, 10017411248, 13736574369, 2579085006, 4549765073,

10017411248, 4549765073, 6105144164, 13765667419, 9795214235,

10017411248, 2801282019, 608404939, 4105371047, 13765667419,

8075824231, 2579085006, 4549765073, 2579085006, 6076051114,

4105371047, 8075824231, 2385981043]

[1]: https://i.stack.imgur.com/xY3zd.png
[2]: https://i.stack.imgur.com/0eYFM.png
[3]: https://i.stack.imgur.com/PMk7s.png

## Runge-Kutta in maple...

dy/dx=sqrt(1+(a*x)+(2*y))

for the case a=1, y=1 and x=0 construct a program for the runge-kutta method of order 2 with formulae as follows where f(x,y)=dy/dx.

k_1=h*f(x_n,y_n)

k_2=h*f(x_n+h,y_n+k_1)

y_(n+1)=y_n+1/2(k_1+k_2).

After creating a program obtain value of y correct to 4 decimal places when x=1 for h=0.1 and h =0.05.

## Component with cycle for...

Meanwhile, thank you so much for everything.
I know I'm asking a lot but if you have time, you can help me do this?

Building a system of interactive components that, taken a function, two points 'a' and 'b' values ​​and an integer n, the calculations point between a and b in which the function assumes the minimum value by using the following procedure:

• It divides the values ​​between a and b into n equal parts (these will distance the one with the other (b-n)/2);
• calculates the function in each of these points;
• located between these values,  what is the minimum (in case of a tie, take the one closest to a)

I think i have to create a vector for each  part and  prehaps with a fcycle for, calculate the function, finelly i'll use minimize with all function.
Do you think is the correct procedure? If yes, how can I do it?

## How to show this Q&A on Maple...

How can i answer iv on Maple?

## Tangent to a curve in maple...

A family of curves has polar equation r=cos^n (theta/n), 0<=theta,n*pi, where n is a positive even integer.

Previously Using t = theta as the parameter and finding  a parametric form of the equation of the family of curves it was shown that

dy/dx = (sin(t)sin(t/n)-cos(t)cos(t/n)) /( sin(t)cos(t/n)+cos(t)sin(t/n)).

Is it possible to show on Maple with a program that there are n+1 points where the tangent to the curve is paralell to the y axis?

## Program for algebraic equation with mod in maple...

I need help to create a program that will find all the positive integers n, where n < 1000, such that
(n 􏰀-1)!= 􏰁 􏰀-1 (mod n^2 ) . program has to be in full and state the values of n obtained.

## Wilsons Theorom...

How could i show wilsons theorom on maple?

(p-1)!=-1(modp) if and only if p is prime.

## How do i create a for loop for this question in Ma...

Hi I have the question where i have to create a program in Maple

to find all the solutions to x^2 = -1(mod p) where 0 <= x < p .

The progam has to be tested with different p values.

## Help with iteratives...

So i got this code, im trying to iterate with jacobi and gaussseidel method.

H := HilbertMatrix(n, n, 1); b := Matrix(n, 1, proc (i) options operator, arrow; add(1/(i+j-1), j = 1 .. n) end proc); A := Matrix(n, 1, 1); Multiply(H, A); norm1H := norm(H, 1); norm2H := norm(H, 2); normHinf := norm(H, infinity); norm1b := norm(b, 1); norm2b := norm(b, 2); norminfb := norm(b, infinity); IterativeApproximate(H, initialapprox = Vector(n, 0), tolerance = 10^(-7), maxiterations = 10, method = gaussseidel)

But sadly no iteration gave me an answer, anyone knows wheres my mistake? i really help with this!

## Hi..I have some Qts ..Can you help me ??PLZ!...

Q1: Pascal’s Matrix of order n is given by:
Sij =(i + j)!/ i!*j!
Use Mable to produce Pascal’s Matrix of order 8.

Q2: Study the Matrix decomposition (i.e. QR, LU, and LLT), then use Maple to produce these decompositions for a random Matrix of order 6.

Q3: Write one paragraph of your own to explain Moore-Penrose Inverse of a Matrix. Use Maple to ﬁnd Moore-Penrose Inverse for a random Matrix of order 8.

Q4: Use Maple to ﬁnd Jordan Canonical form for a random Matrix of order 10.

Q5: Use the seq command to generate the triple [i,j,k] for all possible values for 1 ≤ i,j,k ≤ 10, then plot this triple. i.e. Use nested seq .

Q6: Let F[n] be the set:
F[n] = {p / q: 1 ≤ q ≤ n,p ≤ p ≤ q}
Use Maple to ﬁnd F[6].

## home work question need some hint to get start...

here is my homework, i am new to maple and need some help!

Consider the logistic equation:

,

with seasonally varying population constraint

M(t) = 20 + 1.54sin(pi t / 6)

use maple to plot the solution curve for P(0) = 25

## Computing velocity and position with a random vari...

If a particle that moves in only one dimension is subject to a force Fi between the time

steps ti and ti+1, the velocity vi and position xi of the particle is:

v[i] := v[i − 1] +(1/m)*F[i]*Δt

x[i] := x[i − 1] + 0.5 (v[i − 1] + v[i])

Use the mean of v between ti and ti+1 when updating xi, since the value may change

a lot from step to step. In the subsequent, we set the mass m = 1 and the time steps

are Δt = 1, since we could absorb m and Δt in the expression for the force Fi anyway.

Write a procedure that computes xi and vi for a particle subject to random forces Fi,

uniformly distributed on the interval [-0.5..0.5].

I`ve written a procedure that generates random forces (F[i]) in the given interval. How can I write a for – procedure that computes xi and vi ?

## Revised Simplex Method...

I have to generate a code for carrying out the matrix form of the revised simplex method. I have a code in place but am struggling to convert the constraints into canonical form and introduce the penalty function. If anyone has any ideas I'd be very grateful!

Best Regards

## How to solve these two problems?...

Hello dear Maple,

My name is Bulat, I'm student of Kazan National Research Technical University ( Russia). In our High Program we used your product ( Maple V, Release 4). Now I have two problems and I haven't no idea how I resolve their. I am forced to ask for your help. I upload PrintScreen of my two problems. Please help me to solve them. I' ll be grateful for your help. Sorry for my English :(.

Yours very truly, Bulat

## How Do I Write A Regula Falsi Program In Maple?...

f := unapply(x^2-2, x); a := 1; b := 2; n := 10; Digits := 10;
2
x -> x  - 2
1
2
10
10
c := evalf(eval((a*f(b)-b*f(a))/(f(b)-f(a))));
1.333333333
if  f(c)*f(a)<0 then ;
"      k:=evalf(eval(|(f(c))/(b-c)|)) and "

/(1 + k) a f(b) - b f(a)\
x[i] := evalf|-----------------------|
\  (1 + k) f(b) - f(a)  /
"     elif f(x[i])*f(a)<0 then b:=x[i]"
"     else b:=c and a:=x[i] "
"     if f(c)*f(a)>0 then "
"      k:=|(f(c))/(b-c)|and "

/a f(b) - b f(a) (1 + k)\
x[i] := evalf|-----------------------|
\  f(b) - f(a) (1 + k)  /
"     elif f(x[i])*f(a)>0 then a:=x[i]"
"     else a:=c and b:=x[i] end if"

Error, unterminated 'if' statement
Typesetting:-mambiguous(Typesetting:-mambiguous(

if fApplyFunction(c)sdotfApplyFunction(a)lt0 then ,

Typesetting:-merror("unterminated 'if' statement")))

 1 2 3 4 5 6 7 Last Page 2 of 22
﻿