system of inequation solve...

Hi,

I would like to plot the region of solution of the following system defined by some equations.

restart; with(Optimization);
with(plots);

inequal({-5 <= 4*y1+2*y2+3*y3, -2 <= 3*y1+5*y2+2*y3, -1 <= y1+2*y2+y3, 0 <= y2, y1 <= 0}, {y1, y2, y3}, color = "Nautical 1");

Many thanks for any help

problem with solving inequality...

Dear all,

I am trying to solve this inequality:

0 < 2*b^2*(10*K*a+3*K*b-sqrt((K+(2*K*a+1)/b)^2-4*K/b)*b+5)

for a.

However, I get to the error below:

Error, (in testeq) invalid arguments
does anyone know which mistake I am making?!!

what is this testeq?!

Can I solve an inequality with an assumption?...

Hello people in mapleprimes,

I want to modify the inequality of e assuming d.
But, e/(1-a) assuming(d) does not work well.
How can I do for this?

```d:=(a>0,a<1,b>0,c>0);
0 < a, a < 1, 0 < b, 0 < c
e:=(1-a)*b>c;
c < (1 - a) b
e/(1-a)assuming(d);
`*`(c<(1-a)b,1/(1-a))
```

inequality.mw

How to plot two or more functions/relations at a t...

I'm doing a Maximum/Minimum problem ( Calculus 3).

I need to plot f(x,y) =   x2  + y 2 -2y + 1

over R={x,y): x 2 + y 2         (less than or equal sign) 4}

using is() command to check if an emperical eq is ...

Hi

When I try this maple retuurns FAIL and does not evaluate the expression.

```is(seq(tm[i] < (1/6)*Diameter[rør][i], i = 1 .. 17));
```

tm is numbers in mm and diameter is also numbers in mm

`Diameter[rør] := [273.05*Unit('mm'), 219.08*Unit('mm'), 168.28*Unit('mm'), 114.3*Unit('mm'), 273.05*Unit('mm'), 219.08*Unit('mm'), 1066.8*Unit('mm'), 60.33*Unit('mm'), 219.08*Unit('mm'), 168.28*Unit('mm'), 168.28*Unit('mm'), 141.3*Unit('mm'), 168.28*Unit('mm'), 114.3*Unit('mm'), 114.3*Unit('mm'), 168.28*Unit('mm'), 168.28*Unit('mm')]`
`tm := 8.982892831*Unit('mm'), 4.189790007*Unit('mm'), 3.913902969*Unit('mm'), 3.620745836*Unit('mm'), 4.482892831*Unit('mm'), 4.189790007*Unit('mm'), 8.793627806*Unit('mm'), 3.327643012*Unit('mm'), 4.189790007*Unit('mm'), 3.913902969*Unit('mm'), 3.913902969*Unit('mm'), 3.767378711*Unit('mm'), 3.913902969*Unit('mm'), 3.620745836*Unit('mm'), 3.620745836*Unit('mm'), 3.913902969*Unit('mm'), 3.913902969*Unit('mm')`

Check if an expression is greater than another, ba...

Hi.

I have 2 expressions, the first expression cosist of x´s and y´s, the other expression consits only of x´s

I wanna test the relation between those 2 expression to check wether A>B giving the condition that 2y<x

I have tried this:

```assume(2y<x);

is(A>B);```

the problem is that maple returns FAIL, I could put in values to check and it works, but that is not really what im trying to acomplish.

Thanks

How to get the boundary of RealRange...

I used SOLVE to solve an inequality. The result shows things like this:

How can I read the upper bound to a variable?

THanks!

Problem with range of plot...

Hi I'm not really sure how to phrase this but I'm doing projectile motion and I'm try to graph the solutions for v_0 by theta_0.

Inequality proved with Maple. II

Maple

How to prove the inequality  , assuming that the  variables are nonnegative? That hard question  was asked by arqady in dxdy and answered  by himself  in a complicated way. Maple proves the inequality by the LagrangeMultipliers command which is strong. I think these calculations cannot be done by hand at all. Without loss of generality one may assume . Then

restart:with(Student[MultivariateCalculus]):

ans := [LagrangeMultipliers((a+b+c+d)*(a*b+a*c+a*d+b*c+b*d+c*d)-12*sqrt((a^2+b^2+c^2+d^2)*a*b*c*d), [a+b+c+d-1], [a, b, c, d], output = detailed)]:

We have to remove complex solutions by
ans1:=remove(c -> has(evalf(c), I),ans):

The next big output is  only partly seen in the post (look in the attached file for the whole one).

 [[a = 1/6, b = 1/2, c = 1/6, d = 1/6, lambda[1] = 0, -12*sqrt((a^2+b^2+c^2+d^2)*a*b*c*d)+(b+c+d)*a^2+(b^2+(3*c+3*d)*b+c^2+3*c*d+d^2)*a+(d+c)*b^2+(c^2+3*c*d+d^2)*b+c^2*d+c*d^2 = 0],[a = 1/4, b = 1/4, c = 1/4, d = 1/4, lambda[1] = 0, -12*sqrt((a^2+b^2+c^2+d^2)*a*b*c*d)+(b+c+d)*a^2+(b^2+(3*c+3*d)*b+c^2+3*c*d+d^2)*a+(d+c)*b^2+(c^2+3*c*d+d^2)*b+c^2*d+c*d^2 = 0],[a = 13/72-(1/216)*sqrt(3)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))+(1/216)*sqrt(3)*sqrt(2)*sqrt((11*(11548+108*sqrt(13397))^(1/3)-(11548+108*sqrt(13397))^(2/3)+284)/(11548+108*sqrt(13397))^(1/3)+273*sqrt(3)/sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))), b = 11/24+(1/72)*sqrt(3)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))-(1/72)*sqrt(3)*sqrt(2)*sqrt((11*(11548+108*sqrt(13397))^(1/3)-(11548+108*sqrt(13397))^(2/3)+284)/(11548+108*sqrt(13397))^(1/3)+273*sqrt(3)/sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))), c = 13/72-(1/216)*sqrt(3)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))+(1/216)*sqrt(3)*sqrt(2)*sqrt((11*(11548+108*sqrt(13397))^(1/3)-(11548+108*sqrt(13397))^(2/3)+284)/(11548+108*sqrt(13397))^(1/3)+273*sqrt(3)/sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))), d = 13/72-(1/216)*sqrt(3)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))+(1/216)*sqrt(3)*sqrt(2)*sqrt((11*(11548+108*sqrt(13397))^(1/3)-(11548+108*sqrt(13397))^(2/3)+284)/(11548+108*sqrt(13397))^(1/3)+273*sqrt(3)/sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))), lambda[1] = -(5/36)*(sqrt(2)*(sqrt(3)*(sqrt(13397)-(71/27)*(11548+108*sqrt(13397))^(1/3)-(103/540)*(11548+108*sqrt(13397))^(2/3)+2887/27)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))-15*sqrt(13397)+(355/9)*(11548+108*sqrt(13397))^(1/3)+(109/36)*(11548+108*sqrt(13397))^(2/3)-14435/9)*sqrt((11*(11548+108*sqrt(13397))^(1/3)-(11548+108*sqrt(13397))^(2/3)+284)/(11548+108*sqrt(13397))^(1/3)+273*sqrt(3)/sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3)))-(133/15)*(11548+108*sqrt(13397))^(2/3)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))+(2*((sqrt(13397)+2374/45)*(11548+108*sqrt(13397))^(1/3)+(103/5)*sqrt(13397)+(449/90)*(11548+108*sqrt(13397))^(2/3)+132727/45))*sqrt(3))/((11548+108*sqrt(13397))^(2/3)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))), -12*sqrt((a^2+b^2+c^2+d^2)*a*b*c*d)+(b+c+d)*a^2+(b^2+(3*c+3*d)*b+c^2+3*c*d+d^2)*a+(d+c)*b^2+(c^2+3*c*d+d^2)*b+c^2*d+c*d^2 = -(13/46656)*(((2/13)*sqrt((11*(11548+108*sqrt(13397))^(1/3)-(11548+108*sqrt(13397))^(2/3)+284)/(11548+108*sqrt(13397))^(1/3)+273*sqrt(3)/sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3)))*(11548+108*sqrt(13397))^(1/3)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))+sqrt(2)*(sqrt(3)*(11548+108*sqrt(13397))^(1/3)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))-(11/13)*(11548+108*sqrt(13397))^(1/3)-(2/13)*(11548+108*sqrt(13397))^(2/3)+568/13))*sqrt(5)*sqrt((sqrt(3)*sqrt(2)*sqrt((11*(11548+108*sqrt(13397))^(1/3)-(11548+108*sqrt(13397))^(2/3)+284)/(11548+108*sqrt(13397))^(1/3)+273*sqrt(3)/sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3)))-sqrt(3)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))-33)*(sqrt(3)*sqrt(2)*sqrt((11*(11548+108*sqrt(13397))^(1/3)-(11548+108*sqrt(13397))^(2/3)+284)/(11548+108*sqrt(13397))^(1/3)+273*sqrt(3)/sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3)))-sqrt(3)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))+39)*(sqrt(2)*(sqrt(3)*(11548+108*sqrt(13397))^(1/3)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))+(11/5)*(11548+108*sqrt(13397))^(1/3)+(2/5)*(11548+108*sqrt(13397))^(2/3)-568/5)*sqrt((11*(11548+108*sqrt(13397))^(1/3)-(11548+108*sqrt(13397))^(2/3)+284)/(11548+108*sqrt(13397))^(1/3)+273*sqrt(3)/sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3)))-(216/5)*(11548+108*sqrt(13397))^(1/3)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))-(328/5*((11548+108*sqrt(13397))^(1/3)+(5/164)*(11548+108*sqrt(13397))^(2/3)-355/41))*sqrt(3))/((11548+108*sqrt(13397))^(1/3)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))))-(180/13)*sqrt(2)*(sqrt(3)*(11548+108*sqrt(13397))^(1/3)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))+(11/5)*(11548+108*sqrt(13397))^(1/3)+(2/5)*(11548+108*sqrt(13397))^(2/3)-568/5)*sqrt((11*(11548+108*sqrt(13397))^(1/3)-(11548+108*sqrt(13397))^(2/3)+284)/(11548+108*sqrt(13397))^(1/3)+273*sqrt(3)/sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3)))-(15552/13)*(11548+108*sqrt(13397))^(1/3)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3))+(11808/13*((11548+108*sqrt(13397))^(1/3)+(5/164)*(11548+108*sqrt(13397))^(2/3)-355/41))*sqrt(3))/((11548+108*sqrt(13397))^(1/3)*sqrt((2*(11548+108*sqrt(13397))^(2/3)+11*(11548+108*sqrt(13397))^(1/3)-568)/(11548+108*sqrt(13397))^(1/3)))] (1)

evalf(ans2);

 (2)

Indeed, the minimum value of the target function is exactly 0. Quod erat demonstrantum.

Inequality proved with Maple

Maple

How to prove the inequality  provided , ? That problem was posed  by Israeli mathematician nicked by himself as arqady in Russian math forum and was not answered there.I know how to prove that with Maple and don't know how to prove that without Maple. Neither  nor  work here. The difficulty consists in the nonlinearity both the target function and the main constraint. The first step is to linearize the main constraint and the second step is to reduce the number of variables to one.

restart; A := eval(x^(4*y)+y^(4*x), [x = sqrt(u), y = sqrt(v)]);

 (1)

B := expand(A);

 (2)

C := eval(B, u = 2-v);

 (3)

It is more or less clear that the plot of F is symmetric wrt  the straight line v=1. This motivates the following change of variable  to obtain an even function.

F := simplify(expand(eval(C, v = z+1)), symbolic, power);

 (4)

The plots suggest the only maximim of F at z=0 and its concavity.

Student[Calculus1]:-FunctionPlot(F, z = -1 .. 1);

Student[Calculus1]:-FunctionPlot(diff(F, z, z), z = -1 .. 1);

As usually, numeric global solvers cannot prove certain inequalities. However, the GlobalSearch command of the DirectSearch package indicates the only local maximum of  F and F''.

Digits := 25; DirectSearch:-GlobalSearch(F, {z = -1 .. 1}, maximize, solutions = 3, tolerances = 10^(-15)); DirectSearch:-GlobalSearch(diff(F, z, z), {z = -1 .. 1}, maximize, solutions = 3, tolerances = 10^(-15));

 (5)

The series command confirms a local maximum of F at z=0.

series(F, z, 6);

 (6)

The extrema command indicates only the value of F at a critical point, not outputting its position.

extrema(F, z); extrema(F, z, 's');

 (7)

solve(F = 2);

 (8)

DirectSearch:-SolveEquations(F = 2, {z = -1 .. 1}, AllSolutions, solutions = 3);

 (9)

DirectSearch:-SolveEquations(F = 2, {z = -1 .. 1}, AllSolutions, solutions = 3, assume = integer);

 (10)

PS. I see my proof needs an additional explanation. The DirectSearch command establishes the only both local and global  maximum of F is located at z= -1.98*10^(-13) up to default error 10^(-9). After that  the series command confirms a local maximum at z=0. Combining these, one draws the conclusion that the global maximum is placed exactly at z=0 and equals 2. In order to confirm that the only real root of F=2 at z=0  is found approximately and exactly by the DirectSearch.

Inequality with complex numbers...

For my task I have to solve inequalities in the form

With z being an expression yielding a complex number, but taking a real number as argument. Maple does not give any results when I pass such an expression to the function solve. It just immediately returns without any output.

What can I do to get the solution?

Plotting inequality over complexes...

How can I plot this one?

How to solve hard inequality?...

How to solve the inequality

,

assuming a::real ?

Of course, with Maple. I'd like to demonstrate the difficulties, solving

>solve(log[2*abs(x-a)](abs(x+a)+abs(x-a)) < 1, x) assuming a > 0, a < 1/2

.

The correct answer under the above restrictions is

{x  > 0, x  <  a} union {a  <  x, x <  a + 1/2} union { -infinity < x, x < a - 1/2}.

This is a problem from Lviv math school olympiad '2016.

Problem with isolve...

Hello everyone,

I have some problems with the "isolve" command on Maple. I am trying to solve for integer a very easy system of equations. When I type the commands

restart;

n := 2;
isolve({sum(a[k], k = 1 .. n)-1 = 1}, d)

I get the expected {a[1] = 2-d, a[2] = d}. However, if I add conditions a[1],a[2] >= 0, that is the commands

restart;
n := 2;
isolve({ge(a[1], 0), ge(a[2], 0), sum(a[k], k = 1 .. n)-1 = 1}, d)

I get the warning "Warning, solutions may have been lost". What am I doing wrong? Is there a way to get Maple to give me the possible values?

David

Solve inequalities assuming positive...

Hi all,

I'm new to Maple. Probably this is trivial, but how can I solve an inequality as e.g., the following

-2 <=  a/x <= 0

knowing that x > 0?

Thanks

S.

 1 2 3 Page 1 of 3
﻿