Items tagged with integration

i could have sworn that when itegrating a gaussian maple will write it in terms of the erf functions... but i end up with:

gg:=A * exp( - ( (t - t0) / (tau) )^2 );
val1:=int(gg, t=-x0..x1) assuming t0::real, tau::real, x0<x1, t0>x0, t0<x1, x0::real, x1::real;  #or with no assumptions

 

the results is just gg unchanged... Doing:

convert(val1, erf)

does not help. I can set t0 (or transform it away), and it works, but I was hoping maple would not require this. 

Any thoughts how to help maple with this?

Mathematiaca can read my mind without issues:

 

This is an example of the problem I'm having. I'm working on Quantum Mechanics and have to solve these sort of integrals, where Maple is an allowed tool. I'm sure I probably need to make some sort of assumptions or assign variables, but I'm not sure what to do!

I've been having this problem a lot, so if someone could clarify what I need to specify in order for an integral to be solved in Maple, that would be very helpful!

 

Edit: The changing the []s to ()s fixed that top one. But here's another one where it didn't work.

Good evening sir.

 

I request your valuable support with regard to the above cited query.

 

 

With thanks & regards.

 

Mr.M.Anand

Associate Professor in Mathematics

Hi,
   I just finished a math quiz. I needed to find the length of the curve and area of the function, r=3*cos(theta)-2*sin(theta) bounded between 0<=Pi<=2*Pi.
   On the quiz I used Area=int(1/2*(r^2)) dtheta. For the length of the curve I used L=int(sqrt(r^2 + r'(theta)) dtheta.

How do you plug this into Maple and get an answer?
I came up with 20.42.... sq units for the area and 22.65.... for the length of the curve.

Thank you,
Jay.

I have 

dZ(x)=−xdlog(z(x))

where d is the exterior derivative. I would like to recover the function Z(x) by integrating both sides of the equation. How would I compute this in Maple?

int(a(t)*b(t)+2*(diff(a(t), t))*(diff(b(t), t)), a(t));
Error, (in int) integration range or variable must be specified in the second argument, got a(t)
 

do not understand this error message,

how to integrate it?

 Dear All ! 

I really need to solve this problem as soon as possible, As you know the downside equation is not exact, but I can not find its integration factor, blease help me !

                                                                 ∫{ ( ωx + σy ) d x + (ωy −σx)dy}=0

 Regards ,

 

 

so I'm trying this:

restart;

sigma := 0.143e-18;

l_0 := 1.87;

l0 := 1.87;

roll := rand(0 .. 25.0);

f_gauss := proc (x) options operator, arrow; exp(-(1/2)*x^2/`&sigma;_x`^2)/sqrt(2*Pi*`&sigma;_x`^2) end proc;

f_norm := proc (dx) options operator, arrow; int(f_gauss(x), x = -(1/2)*dx .. (1/2)*dx) end proc;

sol_gauss := proc (mix) options operator, arrow; evalf(eval(-ln((int(f_gauss(x)*exp(-2*sigma*N2O*sqrt((1/4)*l_0^2-x^2)), x = -(1/2)*dx .. (1/2)*dx))/f_norm(dx))/(sigma*N2O), [N2O = 0.25e20*mix/100])) end proc;

for ii to 10 do

a := roll();

eval(sol_gauss(a), [dx = l_0, `&sigma;_x` = l0])

end do

After several attempts on this question,

Int(x*sqrt(2*x^4+3),x) with substitution u = sqrt(2)*x^2,

I don't seem to find the solution. Can you guys help me?

So I have an integral that computes perfectly in wolfram alpha but not in maple...

I will post it here

int(1/((4.532055545*10^9/f^4.14-2.311250000*10^5/f^2+(111*(1-0.2163331531e-4*f^2+2.340001656*10^(-10)*f^4))/(1+0.1081665766e-4*f^2)))*(6*10^(-21)*abs(1/f^(4/3)))^2, [f = 50 .. 1500])

the answer should be 3.05364*10^-46

If you try that exact line of code in maple, it will not compute (is stuck on evaluating)


Best Regards to all,
Zeus

Dear all,

I would like to compute numerically using Maple the following improper integral

``

Integrand := (1/4)*(((((6*I)*beta-3-6*C+(6*I)*C*beta)*s^4+((24*I)*C*beta-24*C-12)*s^2+(24*I)*(1+C)*beta)*BesselK(0, s)+12*BesselK(1, s)*(C+1/2)*s^3)*BesselI(1, s)^3+6*BesselI(0, s)*(-(2*(I*beta*C*s^2+(2*I)*beta*C+(2*I)*beta+4*C+2))*s*BesselK(0, s)+((I*beta*C+I*beta-C-1/2)*s^4+((4*I)*C*beta+4*C+2)*s^2+(4*I)*(1+C)*beta)*BesselK(1, s))*BesselI(1, s)^2-(12*(-(1/2*((C+1/2)*s^2+I*beta*C+I*beta+8*C+4))*s*BesselK(0, s)+((I*beta*C+2*C+1)*s^2+(2*I)*(1+C)*beta)*BesselK(1, s)))*s*BesselI(0, s)^2*BesselI(1, s)+6*s^2*((-2*C-1)*s*BesselK(0, s)+BesselK(1, s)*((C+1/2)*s^2+I*(1+C)*beta))*BesselI(0, s)^3)/((BesselI(0, s)^2*s-BesselI(1, s)^2*s-2*BesselI(1, s)*BesselI(0, s))^2*(C+1/2)*s*Pi):

``


However, Maple does seem to give a result for this integral. I have tried to compute from e.g. 0.001 as an approximation but it turns out that the integrand diverges as s goes to zero. I have also tried some options such as method = _d01amc but I get Error, (in evalf/int) powering may produce overflow.

 

I would appreciate it if someone here could provide with some help with regards to the computation of such improper integrals. Thank you.

 

Download question.mw

Hi everybody

In the following attached file, I try to evaluate an integration, K_fL. Unfortunately, Maple does not evaluate it and just puts integration symbol and its bounds. I want to have final integration value. Is there any solution to this integration or maybe Maple can not solve this integration because of the complexity of integrand?

Thanks in advance

Q1.mw

Hi
I want to solve this integration simbolic:


I use this cammand :

But Maple return this:

Would you Please Help me , thanks

1 2 3 4 5 6 7 Last Page 1 of 14