Items tagged with mathematics


Last week Michael Pisapia, Maplesoft European VP, attended the opening reception of Mathematics: The Winton Gallery at the Science Museum in London. Ahead of being open to the public on 8th December, contributors and donors were invited to take a look behind the scenes of the new gallery, which explores how mathematicians, their tools and ideas have helped to shape the modern world over the last four hundred years.

The gallery is a spectacular space, designed by the world-renowned Zaha Hadid Architects, housing over a hundred artefacts of mathematical origin or significance. It is divided up into disciplines ranging from navigation to risk assessment, and gambling to architecture. Inspired by the Handley Page aircraft, the largest object on display, and suspended as the centrepiece, the gallery is laid out using principles of mathematics and physics. It follows the lines of airflow around it in a stunning display of imagined aerodynamics, brought to life using light and sculpture. You can learn more about its design in this video.

Guests at the reception enjoyed a specially commissioned piece of music from the Royal College of Music titled ‘Gugnunc’, named after the aircraft and inspired by the rhythms of Morse code and mathematical and mechanical processes, and performed at the centre of the gallery.

Of course any exhibit celebrating all things maths is of great interest to us here at Maplesoft, but this one especially so, since Mathematics: The Winton Gallery showcases the earliest available version of Maple.

A copy of Maple V, from 1997, sits in ‘The Power of Computers’ section of the Winton Gallery, in an exhibit which tells the story of the significant role played by mathematical software in improving the quality of mathematics education and research. Other objects in the section include a Calculating Machine from the Scientific Service circa 1939, a PDP-8 minicomputer from the 1960s, and part of Charles Babbage’s mid-19th century analytical engine, intended as a high-powered mathematical calculator.

As many of you will remember, Maple V was a major milestone in the history of Maple, providing unparalleled interactivity, powerful symbolics and creative visualization in mathematical computation and modeling. For a walk down memory lane, check out Maple V: The Future of Mathematics (ca. 1994) on YouTube.

Seeing this copy of Maple finally in place in the exhibit marks the end of a long journey – and not just in the miles it travelled to arrive at the museum from its home in Canada. When we were first approached by the Science Museum for a donation of Maple, we launched a hunt to find not just the right copy of Maple with its box and manuals, but also artefacts that showcased the origin and history of Maple. It was a journey down memory lane for the inventors of Maple as well as the first few employees as they dug out old correspondences, photos, posters and other memorabilia that could be showcased. Today they can be proud of their contribution to this display at the Science Museum. 

Although the case of historic software packages is visually less impressive than many of the other items in the gallery, it certainly attracted plenty of attention as guests made their way in for the first time. 

For fans of Maple V - and there are many - it’s reassuring that the Science Museum are now entrusted with preserving not only the iconic packaging, but with telling the story of Maple’s history and marking its place in the evolution of mathematics and technology.

To learn more about Mathematics: The Winton Gallery, its highlights and architecture, visit

To see the timeline of Maple’s evolution over the years, visit:

A string is wound symmetrically around a circular rod. The string goes exactly
4 times around the rod. The circumference of the rod is 4 cm and its length is 12 cm.
Find the length of the string.
Show all your work.

(It was presented at a meeting of the European Mathematical Society in 2001,
"Reference levels in mathematics in Europe at age16").

Can you solve it? You may want to try before seing the solution.
[I sometimes train olympiad students at my university, so I like such problems].

eq:= 2/Pi*cos(t), 2/Pi*sin(t), 3/2/Pi*t; # The equations of the helix, t in 0 .. 8*Pi:
p:=plots[spacecurve]([eq, t=0..8*Pi],scaling=constrained,color=red, thickness=5, axes=none):
plots:-display(plottools:-cylinder([0,0,0], 2/Pi, 12, style=surface, color=yellow),
                         p, scaling=constrained,axes=none);

VectorCalculus:-ArcLength(<eq>, t=0..8*Pi);



Let's look at the first loop around the rod.
If we develop the corresponding 1/4 of the cylinder, it results a rectangle  whose sides are 4 and 12/4 = 3.
The diagonal is 5 (ask Pythagora why), so the length of the string is 4*5 = 20.





The GroupTheory package in Maple includes facilities for working with finitely presented groups - groups defined by finitely many generators and defining relations.  We now have a video tutorial that covers the basics of this aspect of the package.  As always, we appreciate feedback and suggestions regarding this feature, or new features that you would like to see in the GroupTheory package.



Here we have a very brief introduction to the use of embedded components, but effective for the study of the polynomials in operations and some products made with maple 2015 to strengthen and raise the mathematics today.

(in spanish)



Good afternoon.


I request your valuable suggestion for the above cited subject.

I here by uploading the file for your kind notice.


Good afternoon sir.


I request your kind suggestion to my cited query.



With thanks & Regards



Assistant Professor in Mathematics

SR International Institute of Technology,

Hyderabad, Andhra Pradesh, INDIA.

Hi all

I want to produce following c_nm's(which are differentiation based formula) . assume that N and M are known and f(t) is arbitrary. also n=1,2,...,N and m=0,1,..,M-1

how can we do this?


Mahmood   Dadkhah

Ph.D Candidate

Applied Mathematics Department

Good afternoon.


I request your kind suggestion to my above cited query.



With thanks & Regards



Assistant Professor in Mathematics

SR International Institute of Technology,

Hyderabad, Andhra Pradesh, INDIA.

Hi Again

Assume that we have known matrix namely, Q, of order (m+1)*(m+1) and we want to construct following matrix

where 0(bar) is zero matrix of orde (m+1)*(m+1) and New matrix should be of order {N*(m+1)}*{N*(m+1)} where N is known constant.

thanks for any guide

Mahmood   Dadkhah

Ph.D Candidate

Applied Mathematics Department

Good morning.


I request your kind suggestion to my query posted.



With thanks & Regards



Assistant Professor in Mathematics

SR International Institute of Technology,

Hyderabad, Andhra Pradesh, INDIA.

hi all.

I have wrore the following program for optimization with bernstein and block pulse hybrid functions.

the program have some errors which i can't understand.



macro(LA= LinearAlgebra):

HybrFunc:=proc(N, M,  tj)               # N=Number of subintervals,  M=Number of functions in subintervals
local B, n, m;

global b;

for n from 1 to N do
for m from 0 to M-1 do

B := (i,m,t) -> C(m,i)*(1-t)^(m-i)*t^i:

b[n,m]:=unapply(piecewise(t>=(n-1)*tj/N and t<n*tj/N, B(m,2,N*t-(n-1)*tj), 0), t):

Array(1..N, 0..M-1, (n,m)->b[n,m](t)):

end proc:

HybrFunc(3, 3, 1);

                                       # End Of Definition
g2(t):=t;            #*exp(t-1):                      # Any other function can be replaced here

g1(t):=add(add(c[n,m]*b[n,m](t), m=0..2), n=1..3);
Optimization[Minimize](sqrt(int((g2(t)-g1(t))^2, t=0.. 1)));
plot([g2(t),g1(t)], t=0..1, 0..5, color=[blue,red],thickness=[1,3],discont, scaling=constrained);

Array(1 .. 3, 0 .. 2, {(1, 0) = piecewise(0 <= t and t < 1/3, (1-3*t)^2, 0), (1, 1) = piecewise(0 <= t and t < 1/3, (6*(1-3*t))*t, 0), (1, 2) = piecewise(0 <= t and t < 1/3, 9*t^2, 0), (2, 0) = piecewise(1/3 <= t and t < 2/3, (2-3*t)^2, 0), (2, 1) = piecewise(1/3 <= t and t < 2/3, (2*(2-3*t))*(3*t-1), 0), (2, 2) = piecewise(1/3 <= t and t < 2/3, (3*t-1)^2, 0), (3, 0) = piecewise(2/3 <= t and t < 1, (3-3*t)^2, 0), (3, 1) = piecewise(2/3 <= t and t < 1, (2*(3-3*t))*(3*t-2), 0), (3, 2) = piecewise(2/3 <= t and t < 1, (3*t-2)^2, 0)}, datatype = anything, storage = rectangular, order = Fortran_order)

g2(t) := t

"g1(t):=c[1,0] ({[[(1-3 t)^2,0<=t and t<1/3],[0,otherwise]])+c[1,1] ({[[6 (1-3 t) t,0<=t and t<1/3],[0,otherwise]])+c[1,2] ({[[9 t^2,0<=t and t<1/3],[0,otherwise]])+c[2,0] ({[[(2-3 t)^2,1/3<=t and t<2/3],[0,otherwise]])+c[2,1] ({[[2 (2-3 t) (3 t-1),1/3<=t and t<2/3],[0,otherwise]])+c[2,2] ({[[(3 t-1)^2,1/3<=t and t<2/3],[0,otherwise]])+c[3,0] ({[[(3-3 t)^2,2/3<=t and t<1],[0,otherwise]])+c[3,1] ({[[2 (3-3 t) (3 t-2),2/3<=t and t<1],[0,otherwise]])+c[3,2] ({[[(3 t-2)^2,2/3<=t and t<1],[0,otherwise]])"

Error, (in Optimization:-NLPSolve) complex value encountered

Error, invalid left hand side in assignment


Download Bernestien1.mws

 I'll be so grateful if any one can help me.

Mahmood   Dadkhah

Ph.D Candidate

Applied Mathematics Department

1 2 Page 1 of 2