Items tagged with plot

Feed

How to lebel in inline math mode. I tried labels = ['theta', Typesetting:-Typeset(cos(1/theta)/sqrt(1-theta^2))] which gives a big expression on Y axis spreaded in two lines. But i want to lebelin one line as in latex $\cos(1/\theta)/sqrt(1-\theta^2))$ . Is there a way to do it ?

I would like to look at a 3d plot including an condition about the tree variables of the plot

For this simple case, I only want to see the plot with the condition that 
{40 < y, x < y-40, z < y-40} or {x = 0, y = 40, z <= 0}, {y = x+40, 0 < x, z < x}, {y = x+40, z = x, 0 < x}

. Is that possible? 

In 2d there is no problem. And in 3d I do not know how.

how can i plot tangent function without its Asymptote on kPi/2s ? actuallt i want to plot without its vertical Asymptote, could anybody help? tnx
 

restart:

plot(tan(x),x=-2*Pi..2*Pi,style = line,color = "Blue",legend = "tangent Plot",axes=boxed,gridlines);

 

 


 

Download plot.mw

What is the Maple Formula for the Excel function: =WEIBULL.DIST(A1,2,6.2,FALSE)

where A1..A26 is 0..26  ?  How do I plot it?

Thank you, Les

hello. i want to write this functionT with  "for"loop. but i don't know
 

e.mw

Hi every body,

I have a function "p(v,T)" which I evaluated its critical point. after calculating when I want to plot diagram of "p-v" for some values of "T" around critical value of "T" I expect the shape of diagram for "T" bigger and smaller than critical value of "T" be different. but it not happened. Are here anyone can help me? The function "p(v,T)" is in the file. if you want calculate critical point and check I am right or wrong. Thanks criticalpoint.mw

Hi! I have the system of differential equations

restart; with(plots); with(DEtools);

a := 1;

deq1 := u(s)*(diff(varphi(s), s, s))+2*(diff(u(s), s))*(diff(varphi(s), s))+sin(varphi(s)) = 0;

deq2 := diff(u(s), s, s)-u(s)*(diff(varphi(s), s))^2-cos(varphi(s))+a*(u(s)-1) = 0;

sol := dsolve({deq1, deq2, u(0) = 1, varphi(0) = (1/4)*Pi, (D(u))(0) = 0, (D(varphi))(0) = 0}, {u(s), varphi(s)}, numeric)

 

which is perfectly solved, but I need to convert it to Cartesian coordinates and draw a plot, so what I tried is

x := u(s)*sin(varphi(s));

y := -u(s)*cos(varphi(s));

plot([x, y, s = 0 .. 20])

 

But I'm getting an error "Warning, expecting only range variable s in expressions [u(s)*sin(varphi(s)), -u(s)*cos(varphi(s))] to be plotted but found names [u, varphi]"

I don't know why is this happens if I have a solution. For example, I can get solution for 2 seconds:

sol(2)

[s = 2., u(s) = 2.33095721668252, diff(u(s), s) = 1.02513293353371, varphi(s) = .213677391510693, diff(varphi(s), s) = -.242430995691885]

 

Hello!

I crwated a polyhedron from by grouping vertices to faces, and faces to a shell. My goal is to convert the obtained object into a polyhedron, which behaves similarly as e.g. Archimedean solids generated by Maple. Is it possible? Thank you in advance!

Bests,

Andrzej

hi, learners of maple like me, i was handling a project,but i came across this problem,and i began to doubt the accuracy of maple-plot,,,

very simply expression,result3,changing with the parameter f,

i first plot the f from 100 to 5000,

than i need to watch closer,

so i change the define domain of parameter f, plot f from 100 to 1000,  

and the result of plot definitely  differs from the previous one. 

low vally in the first figure (f in the scale of 100-1000),disappears! that's insane...

 

you can see below,

anyone see it, can you give me some clue? i really do not understand this. why ,why why,,

result3 := 3.269235506947450*10^11*sqrt(-1/(0.975698207102e-3*cos(0.19042716640833e-1*f)^2*cos(0.9521358320417e-2*f)^4-0.975698207102e-3*cos(0.19042716640833e-1*f)^2*cos(0.9521358320417e-2*f)^2+5.099915851388520*10^(-8)*cos(0.9521358320417e-2*f)^4-5.099915851388520*10^(-8)*cos(0.9521358320417e-2*f)^2+1.311634114532540*10^12*sin(0.19042716640833e-1*f)*sin(0.9521358320417e-2*f)*cos(0.9521358320417e-2*f)*cos(0.19042716640833e-1*f)+4.405792916762340*10^26*cos(0.19042716640833e-1*f)^2-4.406861706842330*10^26))

326923550694.745*(-1/(0.975698207102e-3*cos(0.19042716640833e-1*f)^2*cos(0.9521358320417e-2*f)^4-0.975698207102e-3*cos(0.19042716640833e-1*f)^2*cos(0.9521358320417e-2*f)^2+0.509991585138852e-7*cos(0.9521358320417e-2*f)^4-0.509991585138852e-7*cos(0.9521358320417e-2*f)^2+1311634114532.54*sin(0.19042716640833e-1*f)*sin(0.9521358320417e-2*f)*cos(0.9521358320417e-2*f)*cos(0.19042716640833e-1*f)+0.440579291676234e27*cos(0.19042716640833e-1*f)^2-0.440686170684233e27))^(1/2)

(1)

plot(result3, f = 100 .. 5000);

 

 

plot(result3, f = 100 .. 1000);

 

 

 

``


 

Download test.mw

 

 

 

A question was raised recently on Stewart Gough platforms.  I decided to tidy up some old code to show platform position and leg lengths for any given displacement.
 

restart

``

Hexapod Setup Data

 

RotZ := proc (delta) options operator, arrow; Matrix(1 .. 3, 1 .. 3, {(1, 1) = cos(delta), (1, 2) = -sin(delta), (1, 3) = 0, (2, 1) = sin(delta), (2, 2) = cos(delta), (2, 3) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 1}, datatype = anything, storage = rectangular, order = Fortran_order, subtype = Matrix) end proc

a[1] := Vector(3, [.5, 3.0, 0]); a[2] := evalf(RotZ(20*((1/180)*Pi)).a[1]); a[3] := evalf(RotZ(100*((1/180)*Pi)).a[2]); a[4] := evalf(RotZ(20*((1/180)*Pi)).a[3]); a[5] := evalf(RotZ(100*((1/180)*Pi)).a[4]); a[6] := evalf(RotZ(20*((1/180)*Pi)).a[5])

b[1] := evalf(.7*RotZ(-40*((1/180)*Pi)).a[1]); b[2] := evalf(RotZ(100*Pi*(1/180)).b[1]); b[3] := evalf(RotZ(20*Pi*(1/180)).b[2]); b[4] := evalf(RotZ(100*Pi*(1/180)).b[3]); b[5] := evalf(RotZ(20*Pi*(1/180)).b[4]); b[6] := evalf(RotZ(100*Pi*(1/180)).b[5])

Zeroposn := Vector(3, [0, 0, 3])

Tx := Vector(3, [1, 0, 0]); Ty := Vector(3, [0, 1, 0]); Tz := Vector(3, [0, 0, 1])

``

``

NULL

Procedures

 

PlatPosn := proc (x := 0, y := 0, z := 0, alpha := 0, beta := 0, delta := 0) local i, v, Rot, L1, L2, L3, L4, L5, L6; global txn, tyn, tzn, ctrp; description "Calculates the platform position in the Global Coordinates, Unit normals and Leg Lengths"; v := Vector(3, [x, y, z]); ctrp := Zeroposn+v; Rot := Matrix(1 .. 3, 1 .. 3, {(1, 1) = cos(delta)*cos(beta), (1, 2) = -sin(delta)*cos(alpha)+cos(delta)*sin(beta)*sin(alpha), (1, 3) = sin(delta)*sin(alpha)+cos(delta)*sin(beta)*cos(alpha), (2, 1) = sin(delta)*cos(beta), (2, 2) = cos(delta)*cos(alpha)+sin(delta)*sin(beta)*sin(alpha), (2, 3) = -cos(delta)*sin(alpha)+sin(delta)*sin(beta)*cos(alpha), (3, 1) = -sin(beta), (3, 2) = cos(beta)*sin(alpha), (3, 3) = cos(beta)*cos(alpha)}, datatype = anything, storage = rectangular, order = Fortran_order, subtype = Matrix); for i to 6 do bn || i := Zeroposn+v+Rot.b[i] end do; txn := Rot.Tx; tyn := Rot.Ty; tzn := Rot.Tz; print(" Platform centre Global", ctrp); print(" Platform corner Co-ords Global", bn1, bn2, bn3, bn4, bn5, bn6); print("Platform Triad Vectors  ", "X green ", txn, "Y blue", tyn, "Z red ", tzn); L1 := sqrt((bn1-a[1])^%T.(bn1-a[1])); L2 := sqrt((bn2-a[2])^%T.(bn2-a[2])); L3 := sqrt((bn3-a[3])^%T.(bn3-a[3])); L4 := sqrt((bn4-a[4])^%T.(bn4-a[4])); L5 := sqrt((bn5-a[5])^%T.(bn5-a[5])); L6 := sqrt((bn6-a[6])^%T.(bn6-a[6])); print("Leg Lengths"); print("L1= ", L1); print("L2= ", L2); print("L3= ", L3); print("L4= ", L4); print("L5= ", L5); print("L6= ", L6) end proc

``

PlatPlot := proc () local Base, Platformdisplacement, picL1, picL2, picL3, picL4, picL5, picL6; global tx0, ty0, tz0; description "Displays the Hexapod"; Base := plots:-polygonplot3d(Matrix([a[1], a[2], a[3], a[4], a[5], a[6]], datatype = float), color = black, transparency = .5); Platformdisplacement := plots:-polygonplot3d(Matrix([seq(bn || i, i = 1 .. 6)]), color = cyan, transparency = .5); picL1 := plots:-arrow(a[1], bn || 1-a[1], colour = green); picL2 := plots:-arrow(a[2], bn || 2-a[2], colour = blue); picL3 := plots:-arrow(a[3], bn || 3-a[3], colour = blue); picL4 := plots:-arrow(a[4], bn || 4-a[4], colour = blue); picL5 := plots:-arrow(a[5], bn || 5-a[5], colour = blue); picL6 := plots:-arrow(a[6], bn || 6-a[6], colour = orange); tx0 := plots:-arrow(ctrp, txn, colour = green); ty0 := plots:-arrow(ctrp, tyn, colour = blue); tz0 := plots:-arrow(ctrp, tzn, colour = red); plots:-display(Base, picL1, picL2, picL3, picL4, picL5, picL6, Platformdisplacement, tx0, ty0, tz0, axes = box, labels = [X, Y, Z], scaling = constrained) end proc

``

NULL

``

``

PlatPosn()

"L6= ", 3.586394355

(1)

PlatPlot()

 

NULL

PlatPosn(.52, -.89, .7, .2, .67, .3)

"L6= ", 3.055217994

(2)

PlatPlot()

 

NULL

NULL

 

NULL

print('tzn' = LinearAlgebra:-CrossProduct(txn, tyn), `= `, tzn)

tzn = Vector[column](%id = 18446744074564617750), `= `, Vector[column](%id = 18446744074328082542)

(3)

``

``NULL

NULL

Rotation Matrices

NULL

``

 

RotZ := Matrix(3, 3, {(1, 1) = cos(delta), (1, 2) = -sin(delta), (1, 3) = 0, (2, 1) = sin(delta), (2, 2) = cos(delta), (2, 3) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 1})

RotY := Matrix(3, 3, {(1, 1) = cos(beta), (1, 2) = 0, (1, 3) = sin(beta), (2, 1) = 0, (2, 2) = 1, (2, 3) = 0, (3, 1) = -sin(beta), (3, 2) = 0, (3, 3) = cos(beta)})

RotX := Matrix(3, 3, {(1, 1) = 1, (1, 2) = 0, (1, 3) = 0, (2, 1) = 0, (2, 2) = cos(alpha), (2, 3) = -sin(alpha), (3, 1) = 0, (3, 2) = sin(alpha), (3, 3) = cos(alpha)})

NULL

ROT := RotZ.RotY.RotX

Matrix(%id = 18446744074564619310)

(4)

``

``

``


 

Download Reverse_Kinematics_Stewart_Gough_Platform.mw

I want(ed) to plot a surface gievn by f(x,y,z),g(x,y,z),h(x,y,z) where k(x,y,z) =0. I suspect that is not possble but I thought I might ask.

 

thanks

[[1000, 20], [2000, 25], [3000, 24], [4000, 23], [5000, 24]];
  [[1000, 20], [2000, 25], [3000, 24], [4000, 23], [5000, 24]]
data1 := [[1000, 20], [2000, 21], [3000, 32], [4000, 23], [5000, 23]]; 'data1';
                             data1
a*x^3+b*x^2+c*x+d;
                        3      2          
                     a x  + b x  + c x + d
x;
                               x
Equn1 := CurveFitting[LeastSquares]([[1000, 20], [2000, 25], [3000, 24], [4000, 23], [5000, 24]], x, curve = a*x^3+b*x^2+c*x+d);
plot(Equn1,x= 1000..5000)


 

Least Squares Approximation

 

 

Calculate a least squares approximation using specified data points.

 

 

Theoretical Curves for the Two-Stroke Engines and Four-Stroke Engines Brake Power Vs Brake Efficiency

List of Data Points:

[[1000, 20], [2000, 25], [3000, 24], [4000, 23], [5000, 24]]

[[1000, 20], [2000, 25], [3000, 24], [4000, 23], [5000, 24]]

(1)

data1 := [[1000, 20], [2000, 21], [3000, 32], [4000, 23], [5000, 23]]; 'data1'

data1

(2)

Fitting Curve:

a*x^3+b*x^2+c*x+d

a*x^3+b*x^2+c*x+d

(3)

Independent Variable:

x

x

(4)

Least Squares Curve:

Equn1 := CurveFitting[LeastSquares]([[1000, 20], [2000, 25], [3000, 24], [4000, 23], [5000, 24]], x, curve = a*x^3+b*x^2+c*x+d)

plot(Equn1,x= 1000..5000)

 

 

 

 

NULL

Equn1

31/5+(83/4200)*x-(23/3500000)*x^2+(1/1500000000)*x^3

(5)

 

 

Least Squares Fit of Data by a Specified Curve

List of Data Points:

[[3, -1], [5, 3], [6, -7], [7, 5], [9, -2]]

[[3, -1], [5, 3], [6, -7], [7, 5], [9, -2]]

(6)

Fitting Curve:

a*x^2+b*x+c

a*x^2+b*x+c

(7)

Independent Variable:

x

x

(8)

Least Squares Curve:

CurveFitting[LeastSquares]([[3, -1], [5, 3], [6, -7], [7, 5], [9, -2]], x, curve = a*x^2+b*x+c)

-901/210+(213/140)*x-(11/84)*x^2

(9)
 

 

a*x^2+b*x+c

a*x^2+b*x+c

(10)

plot(sin(x), x = 0 .. 4*Pi)

 

``


 

Download LeastSquareApproximation_2nd_and_3rd_Order.mw

The above command plots one curve alright. I want four such curves to go in the same figure using command like

plot(Equn1,Equn2,Equn3,Equn4,view(x=1000..5000)

I am not getting by the above command what I want. Can any one help. A shortcut method is required for me to repeat many times.

Thanks for help.

Ramakrishnav V
 

Hello

I have question. How can I rotate this 2-D plot and create 3-D plot?

plot(exp(-(x-3)^2*cos(4*(x-3))),x=1..5)

Thank you.

hi my friend. i want to find a approximately function of this plot. how i can get this. and i have numerical value in this excel

Book1.xlsx

 

Dear community, 

I'm new to maple and was wondering if you could help me out.

I have this curve where I want to make a line that goes from x=0.5 up to its value on the curve in this case 1.60 and then all the way to the y-axis so there is an area under the curve which I can color if that's even possible?

I have the following in maple:

k := 2.5;
                              2.5
Ca0 := 1;
                               1
v := 20;
                               20
Ca := Ca0*(1-x);
                             1 - x
Fa0 := Ca0*v;
                               20
Cb := Ca0*x;
                               x
ra := k*Ca*Cb;
                         2.5 (1 - x) x
plot(1/ra, x = 0 .. 1);
 

thank you for your help

Best Regards

Saad

1 2 3 4 5 6 7 Last Page 1 of 177