Items tagged with relativity

I would like to see the list of metrics recognize by Maple with their acornym.  For example,:

>Setup(coordinates = spherical, metric = kerr)

Helle everybohy,

I need to setup a metric tensor in 3-d but with the varalble r, theta and phi.  So I try this:

>with(Physics); Setup(mathematicalnotation = true, dimension = 3)

>Setup(coordinates = spherical[r, theta, varphi], metric = M)

where M is the metric that I need to use.  But the last command does not work.  Il I don't write [r, theta, varphi], it work but it's r, theta and t.

Any hint on this please?

Thank you in advance for your help.

Mario Lemelin

mario.lemelin@cgocable.ca

Hello everybody,

In the linearised theory of gravity, I want to do some symbolic calculations.  First, I need to set that:

Then I want to see how the Christoffel symbols will change by putting the above in this:

Any hint someone?  I really appreciate the help for learning the Physics package.  Thank you in advance.

Mario

 

 

 

I have to prove the following:

So I do not need the explicit derivative of the function Psi(r,t) . The metric is:

ds^2=(1-rg/r)*dt^2-(1-rg/r)^(-1)*dr^2

I am in the case of a collapsing star that emit radiation during the collapsing.  And I do not need to have a rotating black hole so that the reason I dont have dt*dr term in the metric, and I fix theta and phi.  So if you look in the Maple file attach to this post, I don't manage to obtain what I need to prove the equality between the two aspect of the same calculation.

Plese, take into account that I am sort of novice with the Physcis package and that the question is not part of an exam.

Thank you in advance for your help. 

Mario Lemelin

dAlembertian.mw

 

 

Below is the worksheet with the whole material presented yesterday in the webinar, “Applying the power of computer algebra to theoretical physics”, broadcasted by the “Institute of Physics” (IOP, England). The material was very well received, rated 4.5 out of 5 (around 30 voters among the more than 300 attendants), and generated a lot of feedback. The webinar was recorded so that it is possible to watch it (for free, of course, click the link above, it will ask you for registration, though, that’s how IOP works).

Anyway, you can reproduce the presentation with the worksheet below (mw file linked at the end, or the corresponding pdf also linked with all the input lines executed). As usual, to reproduce the input/output you need to have installed the latest version of Physics, available in the Maplesoft R&D Physics webpage.

Why computer algebra?

 

 

 

... and why computer algebra?


We can concentrate more on the ideas instead of on the algebraic manipulations

 

We can extend results with ease

 

We can explore the mathematics surrounding a problem

 

We can share results in a reproducible way

 

Representation issues that were preventing the use of computer algebra in Physics

 

 


Notation and related mathematical methods that were missing:


coordinate free representations for vectors and vectorial differential operators,

covariant tensors distinguished from contravariant tensors,

functional differentiation, relativity differential operators and sum rule for tensor contracted (repeated) indices

Bras, Kets, projectors and all related to Dirac's notation in Quantum Mechanics

 

Inert representations of operations, mathematical functions, and related typesetting were missing:

 

inert versus active representations for mathematical operations

ability to move from inert to active representations of computations and viceversa as necessary

hand-like style for entering computations and textbook-like notation for displaying results

 

Key elements of the computational domain of theoretical physics were missing:

 

ability to handle products and derivatives involving commutative, anticommutative and noncommutative variables and functions

ability to perform computations taking into account custom-defined algebra rules of different kinds

(commutator, anticommutator and bracket rules, etc.)

 

 

Examples

 

The Maple computer algebra environment

   

Classical Mechanics

 

Inertia tensor for a triatomic molecule

   

Classical Field Theory

 

*The field equations for the lambda*Phi^4 model

   

*Maxwell equations departing from the 4-dimensional Action for Electrodynamics

   

*The Gross-Pitaevskii field equations for a quantum system of identical particles

   

Quantum mechanics

 

*The quantum operator components of  `#mover(mi("L",mathcolor = "olive"),mo("→",fontstyle = "italic"))` satisfy "[L[j],L[k]][-]=i `ε`[j,k,m] L[m]"

   

Quantization of the energy of a particle in a magnetic field

   

Unitary Operators in Quantum Mechanics

 

*Eigenvalues of an unitary operator and exponential of Hermitian operators

   

Properties of unitary operators

 

 

Consider two set of kets " | a[n] >" and "| b[n] >", each of them constituting a complete orthonormal basis of the same space.


One can always build an unitary operator U that maps one basis to the other, i.e.: "| b[n] >=U | a[n] >"

*Verify that "U=(&sum;) | b[k] >< a[k] |" implies on  "| b[n] >=U | a[n] >"

   

*Show that "U=(&sum;) | b[k] > < a[k] | "is unitary

   

*Show that the matrix elements of U in the "| a[n] >" and  "| b[n] >" basis are equal

   

Show that A and `&Ascr;` = U*A*`#msup(mi("U"),mo("&dagger;"))`have the same spectrum

   

````

Schrödinger equation and unitary transform

 

 

Consider a ket "| psi[t] > " that solves the time-dependant Schrödinger equation:

 

"i `&hbar;` (&PartialD;)/(&PartialD;t) | psi[t] >=H(t) | psi[t] >"

and consider

"| phi[t] > =U(t) | psi[t] >",

 

where U(t) is a unitary operator.

 

Does "| phi[t] >" evolves according a Schrödinger equation

 "i*`&hbar;` (&PartialD;)/(&PartialD;t) | phi[t] >=`&Hscr;`(t) | phi[t] >"

and if yes, which is the expression of `&Hscr;`(t)?

 

Solution

   

Translation operators using Dirac notation

 

In this section, we focus on the operator T[a] = exp((-I*a*P)*(1/`&hbar;`))

Settings

   

The Action (translation) of the operator T[a]"=(e)^(-i (a P)/(`&hbar;`))" on a ket

   

Action of T[a] on an operatorV(X)

   

General Relativity

 

*Exact Solutions to Einstein's Equations  Lambda*g[mu, nu]+G[mu, nu] = 8*Pi*T[mu, nu]

   

*"Physical Review D" 87, 044053 (2013)

 

Given the spacetime metric,

g[mu, nu] = (Matrix(4, 4, {(1, 1) = -exp(lambda(r)), (1, 2) = 0, (1, 3) = 0, (1, 4) = 0, (2, 1) = 0, (2, 2) = -r^2, (2, 3) = 0, (2, 4) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = -r^2*sin(theta)^2, (3, 4) = 0, (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = exp(nu(r))}))

a) Compute the Ricci and Weyl scalars

 

b) Compute the trace of

 

"Z[alpha]^(beta)=Phi R[alpha]^(beta)+`&Dscr;`[alpha]`&Dscr;`[]^(beta) Phi+T[alpha]^(beta)"

 

where `&equiv;`(Phi, Phi(r)) is some function of the radial coordinate, R[alpha, `~beta`] is the Ricci tensor, `&Dscr;`[alpha] is the covariant derivative operator and T[alpha, `~beta`] is the stress-energy tensor

 

T[alpha, beta] = (Matrix(4, 4, {(1, 1) = 8*exp(lambda(r))*Pi, (1, 2) = 0, (1, 3) = 0, (1, 4) = 0, (2, 1) = 0, (2, 2) = 8*r^2*Pi, (2, 3) = 0, (2, 4) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 8*r^2*sin(theta)^2*Pi, (3, 4) = 0, (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = 8*exp(nu(r))*Pi*epsilon}))

c) Compute the components of "W[alpha]^(beta)"" &equiv;"the traceless part of  "Z[alpha]^(beta)" of item b)

 

d) Compute an exact solution to the nonlinear system of differential equations conformed by the components of  "W[alpha]^(beta)" obtained in c)

 

Background: paper from February/2013, "Withholding Potentials, Absence of Ghosts and Relationship between Minimal Dilatonic Gravity and f(R) Theories", by P. Fiziev.

 

a) The Ricci and Weyl scalars

   

b) The trace of "  Z[alpha]^(beta)=Phi R[alpha]^(beta)+`&Dscr;`[alpha]`&Dscr;`[]^(beta) Phi+T[alpha]^(beta)"

   

b) The components of "W[alpha]^(beta)"" &equiv;"the traceless part of " Z[alpha]^(beta)"

   

c) An exact solution for the nonlinear system of differential equations conformed by the components of  "W[alpha]^(beta)"

   

*The Equivalence problem between two metrics

 

 

From the "What is new in Physics in Maple 2016" page:

  

In the Maple PDEtools package, you have the mathematical tools - including a complete symmetry approach - to work with the underlying [Einstein’s] partial differential equations. [By combining that functionality with the one in the Physics and Physics:-Tetrads package] you can also formulate and, depending on the metrics also resolve, the equivalence problem; that is: to answer whether or not, given two metrics, they can be obtained from each other by a transformation of coordinates, as well as compute the transformation.

Example from: A. Karlhede, "A Review of the Geometrical Equivalence of Metrics in General Relativity", General Relativity and Gravitation, Vol. 12, No. 9, 1980

   

*Equivalence for Schwarzschild metric (spherical and Krustal coordinates)

   

Tetrads and Weyl scalars in canonical form

 

 

Generally speaking a canonical form is obtained using transformations that leave invariant the tetrad metric in a tetrad system of references, so that theWeyl scalars are fixed as much as possible (conventionally, either equal to 0 or to 1).

 

Bringing a tetrad in canonical form is a relevant step in the tackling of the equivalence problem between two spacetime metrics.

The implementation is as in "General Relativity, an Einstein century survey", edited by S.W. Hawking (Cambridge) and W. Israel (U. Alberta, Canada), specifically Chapter 7 written by S. Chandrasekhar, page 388:

 

 

`&Psi;__0`

`&Psi;__1`

`&Psi;__2`

`&Psi;__3`

`&Psi;__4`

Residual invariance

Petrov type I

0

"<>0"

"<>0"

1

0

none

Petrov type II

0

0

"<>0"

1

0

none

Petrov type III

0

0

0

1

0

none

Petrov type D

0

0

"<>0"

0

0

`&Psi;__2`  remains invariant under rotations of Class III

Petrov type N

0

0

0

0

1

`&Psi;__4` remains invariant under rotations of Class II

 

 

The transformations (rotations of the tetrad system of references) used are of Class I, II and III as defined in Chandrasekar's chapter - equations (7.79) in page 384, (7.83) and (7.84) in page 385. Transformations of Class I can be performed with the command Physics:-Tetrads:-TransformTetrad using the optional argument nullrotationwithfixedl_, of Class II using nullrotationwithfixedn_ and of Class III by calling TransformTetrad(spatialrotationsm_mb_plan, boostsn_l_plane), so with the two optional arguments simultaneously.

 

The determination of appropriate transformation parameters to be used in these rotations, as well as the sequence of transformations happens all automatically by using the optional argument, canonicalform of TransformTetrad .

 

restart; with(Physics); with(Tetrads)

`Setting lowercaselatin letters to represent tetrad indices `

 

0, "%1 is not a command in the %2 package", Tetrads, Physics

 

0, "%1 is not a command in the %2 package", Tetrads, Physics

 

[IsTetrad, NullTetrad, OrthonormalTetrad, PetrovType, SimplifyTetrad, TransformTetrad, e_, eta_, gamma_, l_, lambda_, m_, mb_, n_]

(7.4.1)

Petrov type I

   

Petrov type II

   

Petrov type III

   

Petrov type N

   

Petrov type D

   

 

 

Physics_2016_IOP_webinar.mw     Physics_2016_IOP_webinar.pdf


Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft

Tetrads and Weyl scalars in canonical form

 

The material below is about a new development that didn't arrive in time for the launch of Maple 2016 (March) and that complements in a relevant way the ones introduced in Physics in Maple 2016. It is at topic in general relativity, the computation of a canonical form of a tetrad, so that, generally speaking (skipping a technical description) the Weyl scalars are fixed as much as possible (either equal to 0 or to 1) regarding transformations that leave invariant the tetrad metric in a tetrad system of references. Bringing a tetrad in canonical form is a relevant step in the tackling of the equivalence problem between two spacetime metrics (Mapleprimes post), and it is relevant in connection with the digitizing in Maple 2016 of the database of solutions to Einstein's equations of the book Exact Solutions to Einstein Field Equations.

The reference for this development is the book "General Relativity, an Einstein century survey", edited by S.W. Hawking (Cambridge) and W. Israel (U. Alberta, Canada), specifically Chapter 7 written by S. Chandrasekhar, and more specifically exploring what is said in page 388 about the Petrov classification.


A canonical form for the tetrad and Weyl scalars admits alternate forms; the implementation is as implicit in page 388:

 

`&Psi;__0`

`&Psi;__1`

`&Psi;__2`

`&Psi;__3`

`&Psi;__4`

Residual invariance

Petrov type I

0

"<>0"

"<>0"

1

0

none

Petrov type II

0

0

"<>0"

1

0

none

Petrov type III

0

0

0

1

0

none

Petrov type D

0

0

"<>0"

0

0

`&Psi;__2`  remains invariant under rotations of Class III

Petrov type N

0

0

0

0

1

`&Psi;__4` remains invariant under rotations of Class II

 

The transformations (rotations of the tetrad system of references) used are of Class I, II and III as defined in Chandrasekar's chapter - equations (7.79) in page 384, (7.83) and (7.84) in page 385. Transformations of Class I can be performed with the command Physics:-Tetrads:-TransformTetrad using the optional argument nullrotationwithfixedl_, of Class II using nullrotationwithfixedn_ and of Class III by calling TransformTetrad(spatialrotationsm_mb_plan, boostsn_l_plane), so with the two optional arguments simultaneously.

 

In this development, a new optional argument, canonicalform got implemented to TransformTetrad so that the whole sequence of three transformations of Classes I, II and III is performed automatically, in one go. Regarding the canonical form of the tetrad, the main idea is that from the change in the Weyl scalars one can derive the parameters entering tetrad transformations that result in a canonical form of the tetrad. 

 

with(Physics); with(Tetrads)

`Setting lowercaselatin letters to represent tetrad indices `

 

0, "%1 is not a command in the %2 package", Tetrads, Physics

 

0, "%1 is not a command in the %2 package", Tetrads, Physics

 

[IsTetrad, NullTetrad, OrthonormalTetrad, PetrovType, SimplifyTetrad, TransformTetrad, e_, eta_, gamma_, l_, lambda_, m_, mb_, n_]

(1)

(Note the Tetrads:-PetrovType command, unfinished in the first release of Maple 2016.) To run the following computations you need to update your Physics library to the latest version from the Maplesoft R&D Physics webpage, so with this datestamp or newer:

Physics:-Version()

"/Users/ecterrab/Maple/lib/Physics2016.mla", `2016, April 20, 12:56 hours`

(2)

An Example of Petrov type I

There are six Petrov types: I, II, III, D, N and O. Start with a spacetime metric of Petrov type "I"  (the numbers always refer to the equation number in the "Exact solutions to Einstein's field equations" textbook)

g_[[12, 21, 1]]

`Systems of spacetime Coordinates are: `*{X = (t, x, y, phi)}

 

`Default differentiation variables for d_, D_ and dAlembertian are: `*{X = (t, x, y, phi)}

 

`The McLenaghan, Tariq (1975), Tupper (1976) metric in coordinates `[t, x, y, phi]

 

`Parameters: `[a, k, kappa0]

 

"`Comments: `_k parametrizes the most general electromagnetic invariant with respect to the last 3 Killing vectors"

 

`Resetting the signature of spacetime from "+ - - -" to \`- + + +\` in order to match the signature in the database of metrics:`

 

g[mu, nu] = (Matrix(4, 4, {(1, 1) = -1, (1, 2) = 0, (1, 3) = 0, (1, 4) = 2*y, (2, 1) = 0, (2, 2) = a^2/x^2, (2, 3) = 0, (2, 4) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = a^2/x^2, (3, 4) = 0, (4, 1) = 2*y, (4, 2) = 0, (4, 3) = 0, (4, 4) = x^2-4*y^2}))

(3)

The Weyl scalars

Weyl[scalars]

psi__0 = (1/4)*((4*I)*x^3*abs(x)^3-abs(x)^6+abs(x)^4*x^2+abs(x)^2*x^4-x^6)/(a^2*abs(x)^4*x^2), psi__1 = 0, psi__2 = -(1/4)*(x^2+abs(x)^2)*(x^4+abs(x)^4)/(a^2*abs(x)^4*x^2), psi__3 = 0, psi__4 = (1/4)*((4*I)*x^3*abs(x)^3-abs(x)^6+abs(x)^4*x^2+abs(x)^2*x^4-x^6)/(a^2*abs(x)^4*x^2)

(4)

... there is abs around. Let's assume everything is positive to simplify formulas, use Capital Physics:-Assume  (the lower case assume  command redefines the assumed variables, so it is not compatible with Physics, DifferentialGeometry and VectorCalculus among others).

Assume(x > 0, y > 0, a > 0)

{a::(RealRange(Open(0), infinity))}, {x::(RealRange(Open(0), infinity))}, {y::(RealRange(Open(0), infinity))}

(5)

The scalars are now simpler, although still not in "canonical form" because `&Psi;__4` <> 0 and `&Psi;__3` <> 1.

Weyl[scalars]

psi__0 = I/a^2, psi__1 = 0, psi__2 = -1/a^2, psi__3 = 0, psi__4 = I/a^2

(6)

The Petrov type

PetrovType()

"I"

(7)

The  call to Tetrads:-TransformTetrad two lines below transforms the current tetrad ,

e_[]

Physics:-Tetrads:-e_[a, mu] = Matrix(%id = 18446744078512745638)

(8)

into another tetrad such that the Weyl scalars are in canonical form, which for Petrov "I" type happens when `&Psi;__0` = 0, `&Psi;__4` = 0 and `&Psi;__3` = 1.

TransformTetrad(canonicalform)

Matrix(%id = 18446744078500192254)

(9)

Despite the fact that the result is a much more complicated tetrad, this is an amazing result in that the resulting Weyl scalars are all fixed (see below).  Let's first verify that this is indeed a tetrad, and that now the Weyl scalars are in canonical form

"IsTetrad(?)"

`Type of tetrad: null `

 

true

(10)

Set (9) to be the tetrad in use and recompute the Weyl scalars

"Setup(tetrad = ?):"

Inded we now have `&Psi;__0` = 0, `&Psi;__4` = 0 and `&Psi;__3` = 1 

simplify([Weyl[scalars]])

[psi__0 = 0, psi__1 = (-1/2-(3/2)*I)/a^4, psi__2 = (-1+I)/a^2, psi__3 = 1, psi__4 = 0]

(11)

So Weyl scalars computed after setting the canonical tetrad (9) to be the tetrad in use are in canonical form. Great! NOTE: computing the canonicalWeyl scalars is not really the difficult part, and within the code, these scalars (11) are computed before arriving at the tetrad (9). What is really difficult (from the point of view of computational complexity and simplifications) is to compute the actual canonical form of the tetrad (9).

 

An Example of Petrov type II

Consider this other solution to Einstein's equation (again, the numbers in g_[[24,37,7]] always refer to the equation number in the "Exact solutions to Einstein's field equations" textbook)

g_[[24, 37, 7]]

`Systems of spacetime Coordinates are: `*{X = (u, v, x, y)}

 

`Default differentiation variables for d_, D_ and dAlembertian are: `*{X = (u, v, x, y)}

 

`The Stephani metric in coordinates `[u, v, x, y]

 

`Parameters: `[f(x), a, Psi1(u, x, y)]

 

"`Comments: `Case 6 from Table 24.1:_Psi1(u,x,y): diff(_Psi1(u,x,y),x,x)+diff(_Psi1(u,x,y),y,y)=0, diff(x*diff(_M(u,x,y),x),x)+x*diff(_M(u,x,y),y,y)=_kappa0*(diff(_Psi(u,x,y),x)^2+diff(_Psi(u,x,y),y)^2)"

 

g[mu, nu] = (Matrix(4, 4, {(1, 1) = -2*x*(f(x)+y*a), (1, 2) = -x, (1, 3) = 0, (1, 4) = 0, (2, 2) = 0, (2, 3) = 0, (2, 4) = 0, (3, 3) = 1/x^(1/2), (3, 4) = 0, (4, 4) = 1/x^(1/2)}, storage = triangular[upper], shape = [symmetric]))

(12)

Check the Petrov type

PetrovType()

"II"

(13)

The starting tetrad

e_[]

Physics:-Tetrads:-e_[a, mu] = Matrix(%id = 18446744078835577550)

(14)

results in Weyl scalars not in canonical form:

Weyl[scalars]

psi__0 = 0, psi__1 = 0, psi__2 = (1/8)/x^(3/2), psi__3 = 0, psi__4 = -((3*I)*a-2*x*(diff(diff(f(x), x), x))-3*(diff(f(x), x)))/(x^(1/2)*(4*y*a+4*f(x)))

(15)

For Petrov type "II", the canonical form is as for type "I" but in addition `&Psi;__1` = 0. Again let's assume positive, not necessary, but to get simpler formulas around

Assume(f(x) > 0, x > 0, y > 0, a > 0)

{a::(RealRange(Open(0), infinity))}, {x::(RealRange(Open(0), infinity)), (-f(x))::(RealRange(-infinity, Open(0))), (f(x))::(RealRange(Open(0), infinity))}, {y::(RealRange(Open(0), infinity))}

(16)

Compute now a canonical form for the tetrad, to be used instead of (14)

TransformTetrad(canonicalform)

Matrix(%id = 18446744078835949430)

(17)

Set this tetrad and check the Weyl scalars again

"Setup(tetrad = ?):"

Weyl[scalars]

psi__0 = 0, psi__1 = 0, psi__2 = (1/8)/x^(3/2), psi__3 = 1, psi__4 = 0

(18)

This result (18) is fantastic. Compare these Weyl scalars with the ones (15) before transforming the tetrad.

 

An Example of Petrov type III

g_[[12, 35, 1]]

`Systems of spacetime Coordinates are: `*{X = (u, x, y, z)}

 

`Default differentiation variables for d_, D_ and dAlembertian are: `*{X = (u, x, y, z)}

 

`The Kaigorodov (1962), Cahen (1964), Siklos (1981), Ozsvath (1987) metric in coordinates `[u, x, y, z]

 

`Parameters: `[Lambda]

 

g[mu, nu] = (Matrix(4, 4, {(1, 1) = 0, (1, 2) = exp(-2*z), (1, 3) = 0, (1, 4) = 0, (2, 2) = exp(4*z), (2, 3) = 2*exp(z), (2, 4) = 0, (3, 3) = 2*exp(-2*z), (3, 4) = 0, (4, 4) = 3/abs(Lambda)}, storage = triangular[upper], shape = [symmetric]))

(19)

Assume(z > 0, Lambda > 0)

{Lambda::(RealRange(Open(0), infinity))}, {z::(RealRange(Open(0), infinity))}

(20)

The Petrov type and the original tetrad

PetrovType()

"III"

(21)

e_[]

Physics:-Tetrads:-e_[a, mu] = Matrix(%id = 18446744078349449926)

(22)

This tetrad results in the following scalars

Weyl[scalars]

psi__0 = -2*Lambda*2^(1/2)+(11/4)*Lambda, psi__1 = -(1/2)*Lambda*2^(1/2)+(3/4)*Lambda, psi__2 = (1/4)*Lambda, psi__3 = -(1/2)*Lambda*2^(1/2)-(3/4)*Lambda, psi__4 = 2*Lambda*2^(1/2)+(11/4)*Lambda

(23)

that are not in canonical form, which for Petrov type III is as in Petrov type II but in addition we should have `&Psi;__2` = 0.

Compute now a canonical form for the tetrad

TransformTetrad(canonicalform)

Matrix(%id = 18446744078500057566)

(24)

Set this one to be the tetrad in use and recompute the Weyl scalars

"Setup(tetrad = ?):"

Weyl[scalars]

psi__0 = 0, psi__1 = 0, psi__2 = 0, psi__3 = 1, psi__4 = 0

(25)

Great!``

An Example of Petrov type N

g_[[12, 6, 1]]

`Systems of spacetime Coordinates are: `*{X = (u, v, y, z)}

 

`Default differentiation variables for d_, D_ and dAlembertian are: `*{X = (u, v, y, z)}

 

`The Defrise (1969) metric in coordinates `[u, v, y, z]

 

`Parameters: `[Lambda, kappa0]

 

"`Comments: `_Lambda < 0 required for a pure radiation solution"

 

g[mu, nu] = (Matrix(4, 4, {(1, 1) = 0, (1, 2) = -(3/2)/(y^2*Lambda), (1, 3) = 0, (1, 4) = 0, (2, 2) = -3/(y^4*Lambda), (2, 3) = 0, (2, 4) = 0, (3, 3) = 3/(y^2*Lambda), (3, 4) = 0, (4, 4) = 3/(y^2*Lambda)}, storage = triangular[upper], shape = [symmetric]))

(26)

Assume(y > 0, Lambda > 0)

{Lambda::(RealRange(Open(0), infinity))}, {y::(RealRange(Open(0), infinity))}

(27)

PetrovType()

"N"

(28)

The original tetrad and related Weyl scalars are not in canonical form:

e_[]

Physics:-Tetrads:-e_[a, mu] = Matrix(%id = 18446744078404437406)

(29)

Weyl[scalars]

psi__0 = -(1/4)*Lambda, psi__1 = -((1/4)*I)*Lambda, psi__2 = (1/4)*Lambda, psi__3 = ((1/4)*I)*Lambda, psi__4 = -(1/4)*Lambda

(30)

For Petrov type "N", the canonical form has `&Psi;__4` <> 0 and all the other `&Psi;__n` = 0.

Compute a canonical form, set it to be the tetrad in use and recompute the Weyl scalars

TransformTetrad(canonicalform)

Matrix(%id = 18446744078518486190)

(31)

"Setup(tetrad = ?):"

Weyl[scalars]

psi__0 = 0, psi__1 = 0, psi__2 = 0, psi__3 = 0, psi__4 = 1

(32)

All as expected.

An Example of Petrov type D

 

g_[[12, 8, 4]]

`Systems of spacetime Coordinates are: `*{X = (t, x, y, z)}

 

`Default differentiation variables for d_, D_ and dAlembertian are: `*{X = (t, x, y, z)}

 

`The  metric in coordinates `[t, x, y, z]

 

`Parameters: `[A, B]

 

"`Comments: `k = 0, kprime = 1, not an Einstein metric"

 

g[mu, nu] = (Matrix(4, 4, {(1, 1) = -B^2*sin(z)^2, (1, 2) = 0, (1, 3) = 0, (1, 4) = 0, (2, 2) = A^2, (2, 3) = 0, (2, 4) = 0, (3, 3) = A^2*x^2, (3, 4) = 0, (4, 4) = B^2}, storage = triangular[upper], shape = [symmetric]))

(33)

Assume(A > 0, B > 0, x > 0, 0 <= z and z <= (1/4)*Pi)

{A::(RealRange(Open(0), infinity))}, {B::(RealRange(Open(0), infinity))}, {x::(RealRange(Open(0), infinity))}, {z::(RealRange(0, (1/4)*Pi))}

(34)

PetrovType()

"D"

(35)

The default tetrad and related Weyl scalars are not in canonical form, which for Petrov type "D" is with `&Psi;__2` <> 0 and all the other `&Psi;__n` = 0

e_[]

Physics:-Tetrads:-e_[a, mu] = Matrix(%id = 18446744078503920694)

(36)

Weyl[scalars]

psi__0 = (1/4)/B^2, psi__1 = 0, psi__2 = (1/12)/B^2, psi__3 = 0, psi__4 = (1/4)/B^2

(37)

Transform the  tetrad, set it and recompute the Weyl scalars

TransformTetrad(canonicalform)

Matrix(%id = 18446744078814996830)

(38)

"Setup(tetrad=?):"

Weyl[scalars]

psi__0 = 0, psi__1 = 0, psi__2 = -(1/6)/B^2, psi__3 = 0, psi__4 = 0

(39)

Again the expected canonical form of the Weyl scalars, and `&Psi;__2` <> 0 remains invariant under transformations of Class III.

 

An Example of Petrov type O

 

Finally an example of type "O". This corresponds to a conformally flat spacetime, for which the Weyl tensor (and with it all the Weyl scalars) vanishes. So the code just interrupts with "not implemented for conformally flat spactimes of Petrov type O"

g_[[8, 33, 1]]

`Systems of spacetime Coordinates are: `*{X = (t, x, y, z)}

 

`Default differentiation variables for d_, D_ and dAlembertian are: `*{X = (t, x, y, z)}

 

`The  metric in coordinates `[t, x, y, z]

 

`Parameters: `[K]

 

"`Comments: `_K=3*_Lambda, _K>0 de Sitter, _K<0 anti-de Sitte"

 

g[mu, nu] = z

(40)

PetrovType()

"O"

(41)

The Weyl tensor and its scalars all vanish:

Weyl[nonzero]

Physics:-Weyl[mu, nu, alpha, beta] = {}

(42)

simplify(evala([Weyl[scalars]]))

[psi__0 = 0, psi__1 = 0, psi__2 = 0, psi__3 = 0, psi__4 = 0]

(43)

TransformTetrad(canonicalform)

Error, (in Tetrads:-CanonicalForm) canonical form is not implemented for flat or conformally flat spacetimes of Petrov type "O"

 

NULL

 

Download TetradsAndWeylScalarsInCanonicalForm.mw

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft

Need help for manipulating tensor with the physics package.

I ask some questions about this.  But each time, I am refer to the help pages.  If I ask again some help, it is because I can't not start with the information on the help file.  It is written for people that already know General Relativity (GR).

 

So this time, I have created a document (attach to this post) where I ask specific queations on manipulations.  My goal is to ccrreate a document that I will put on the Applications Center.  I promess that those who will help me on this will be cited in the document.  This way, I hope to create an introduction on how to use tensors for beginner like me.

 

Then, with this help, I am sure I will be able to better understand the help page of the packages.  I am doing this as someone who is starting to learn GR and have to be able to better understand the manipulations of tensor and getting the grasp of teh meaning of all those tensor.  For exemple, the concept of parallel transport on a curve surface.

 

Thank you in advance for all the troubling I give you with this demand.

 

Regards,Parallel_Transport.mw

 

 

 

 

 

 

 

--------------------------------------
Mario Lemelin
Maple 2015 Ubuntu 14.04 - 64 bits
Maple 2015 Win 7 - 64 bits messagerie : mario.lemelin@cgocable.ca téléphone :  (819) 376-0987

Hello everybody,

 

I want to use the physics package in the context of special relativity.  I am mostly interrested with the Lorenzts transformations, not having to unprotect gamma all the time, the 4-vectors for space, time and momentum in (ct,x,y).  For exemple, to be able to calculate the invariant (ct)^2-(r^2).  A small document (or worksheet) would be very nice of you.

I understande that someone could say that I want to use a gun to kill a fly.  But this is a process that will lead me in using it in general relativity and using tensors in my calculations.  It would be very interresting to have a Student,Physics package.  Don't you think so?

Thank you in advance for your trouble and comprehension.

 

--------------------------------------
Mario Lemelin
Maple 18 Ubuntu 13.10 - 64 bits
Maple 18 Win 7 - 64 bits messagerie : mario.lemelin@cgocable.ca téléphone :  (819) 376-0987

I was recently asked about performing some General Relativity computations from a paper by Plamen Fiziev, posted in the arXiv in 2013. It crossed my mind that this question is also instrumental to illustrate how these General Relativity algebraic computations can be performed using the Physics package. The pdf and mw links at the end show the same contents but with the Sections expanded.

 

General Relativity using Computer Algebra

 

Problem: for the spacetime metric,

g[mu, nu] = (Matrix(4, 4, {(1, 1) = -exp(lambda(r)), (1, 2) = 0, (1, 3) = 0, (1, 4) = 0, (2, 1) = 0, (2, 2) = -r^2, (2, 3) = 0, (2, 4) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = -r^2*sin(theta)^2, (3, 4) = 0, (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = exp(nu(r))}))

 

a) Compute the trace of

 

"Z[alpha]^(beta)=Phi R[alpha]^(beta)+`&Dscr;`[alpha]`&Dscr;`[]^(beta) Phi+T[alpha]^(beta)"

 

where `&equiv;`(Phi, Phi(r)) is some function of the radial coordinate, R[alpha, `~beta`] is the Ricci tensor, `&Dscr;`[alpha] is the covariant derivative operator and T[alpha, `~beta`] is the stress-energy tensor

 

T[alpha, beta] = (Matrix(4, 4, {(1, 1) = 8*exp(lambda(r))*Pi, (1, 2) = 0, (1, 3) = 0, (1, 4) = 0, (2, 1) = 0, (2, 2) = 8*r^2*Pi, (2, 3) = 0, (2, 4) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 8*r^2*sin(theta)^2*Pi, (3, 4) = 0, (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = 8*exp(nu(r))*Pi*epsilon}))

b) Compute the components of "W[alpha]^(beta)"" &equiv;"the traceless part of  "Z[alpha]^(beta)" of item a)

 

c) Compute an exact solution to the nonlinear system of differential equations conformed by the components of  "W[alpha]^(beta)" obtained in b)

 

Background: The equations of items a) and b) appear in a paper from February/2013, "Withholding Potentials, Absence of Ghosts and Relationship between Minimal Dilatonic Gravity and f(R) Theories", by Plamen Fiziev, a Maple user.  These equations model a problem in the context of a Branse-Dicke theory with vanishing parameter "omega." The Brans–Dicke theory is in many respects similar to Einstein's theory, but the gravitational "constant" is not actually presumed to be constant - it can vary from place to place and with time - and the gravitational interaction is mediated by a scalar field. Both Brans–Dicke's and Einstein's theory of general relativity are generally held to be in agreement with observation.

 

The computations below aim at illustrating how this type of computation can be performed using computer algebra, and so they focus only on the algebraic aspects, not the physical interpretation of the results.

a) The trace of "  Z[alpha]^(beta)=Phi R[alpha]^(beta)+`&Dscr;`[alpha]`&Dscr;`[]^(beta) Phi+T[alpha]^(beta)"

   

b) The components of "W[alpha]^(beta)"" &equiv;"the traceless part of " Z[alpha]^(beta)"

   

c) An exact solution for the nonlinear system of differential equations conformed by the components of  "W[alpha]^(beta)"

   

 

GeneralRelativit.pdf    GeneralRelativity.mw

Edgardo S. Cheb-Terrab 
Physics, Differential Equations and Mathematical Functions, Maplesoft

I have just started using Maple 17 for general relativity, and I have managed to set up coordinates and enter a somewhat complicated spacetime metric, and to find the Killing vectors for the metric.

I can't seem to do something much more basic, though, initialize the components of a vector field as functions of the coordinates.

For example, how would I set up a 4-vector field A such that the contravariant component A^3 = cosh(x2), where x2 is one of my coordinates?

Thanks.

(Presentation in Spain a month ago with a full description of the project and its current status)

A computational environment for Physicists

 

 

"Algebraic manipulations in Physics and related numerical exploration and visualization come together within computer algebra systems"

Project background

   

Three reasons for the underuse of Computer Algebra Systems in Physics

   

The Physics project goals

   

Status of things in Maple 17

   

Examples

   

 

 

Download PhysicsProjectDescri.mw

 


Edgardo S. Cheb-Terrab
Physics, Maplesoft

I need some sugestions how to expand terms raised to some exponent within an expression. How to simplify,How to collect terms with some conmon factor within the same expression relativistic_11.mw

Page 1 of 1