alpha_sum := proc(n) local poles; poles := [[1+I, 1/2*log(2) + I*Pi/4], [1-I, 1/2*log(2) + 7*I*Pi/4], [-2, log(2) + I*Pi]]; add(residue(1/(x^3-2*x+4), x=p[1])*p[2]^n, p in poles); end; Q := proc(n) option remember; local res; if n = 0 then return simplify(int(1/(x^3-2*x+4), x=0..infinity)); fi; res := -1/(n+1)*alpha_sum(n+1) -1/(n+1)*add(binomial(n+1, p)*(2*Pi*I)^(n-p)*Q(p), p=0..n-1); simplify(res); end; VERIF := n -> int((log(x))^n/(x^3-2*x+4), x=0..infinity);