:

## Approaching Putnam 2015 problems with Maple

Maple

The well known William Lowell Putnam Mathematical Competition (76th edition)  took place this month.
Here is a Maple approach for two of the problems.

1. For each real number x, 0 <= x < 1, let f(x) be the sum of  1/2^n  where n runs through all positive integers for which floor(n*x) is even.
Find the infimum of  f.
(Putnam 2015, A4 problem)

f:=proc(x,N:=100)
local n, s:=0;
for n to N do
if type(floor(n*x),even) then s:=s+2^(-n) fi;
#if floor(n*x) mod 2 = 0  then s:=s+2^(-n) fi;
od;
evalf(s);
#s
end;

plot(f, 0..0.9999);

min([seq(f(t), t=0.. 0.998,0.0001)]);

0.5714285714

identify(%);

So, the infimum is 4/7.
Of course, this is not a rigorous solution, even if the result is correct. But it is a valuable hint.
I am not sure if in the near future, a CAS will be able to provide acceptable solutions for such problems.

2. If the function f  is three times differentiable and  has at least five distinct real zeros,
then f + 6f' + 12f'' + 8f''' has at least two distinct real zeros.
(Putnam 2015, B1 problem)

restart;
F := f + 6*D(f) + 12*(D@@2)(f) + 8*(D@@3)(f);

dsolve(F(x)=u(x),f(x));

We are sugested to consider

g:=f(x)*exp(x/2):
g3:=diff(g, x\$3);

simplify(g3*8*exp(-x/2));

So, F(x) = k(x) * g3 = k(x) * g'''
g  has 5 distinct zeros implies g''' and hence F have 5-3=2 distinct zeros, q.e.d.

﻿