MaplePrimes Questions

Search Questions:

Hi!

So I like to check that my manual integrations and/or maple integrations are equal with each other. I normally do this using the Test Relation function.

I was working on a problem and noticed that Maple didn't evaluate the integrals being the same, even though they presumedly are.

Could anyone shed some light on why I get this inequality?

Thanks in advance!

mapleintvsmanualint.mw

restartNULL

dn/dt = -r__S*V

 

We can define n as C*V 

dC*V/dt = -r__S*V

 

We can define the concentration C as S  

dS/dt = -r__S

 

where -r__S = V__max*[S]/(1+K__1*[S]+K__2*[S^2])

  

ds/dt = -V__max*[S]/(1+K__1*[S]+K__2*[S^2])=

 

1/dt = -V__max*[S]/((1+K__1*[S]+K__2*[S^2])*ds)

 

dt = (1+k__1*[S]+K__2*[S^2])*ds/(V__max*[S])

 

"ⅆt = 1/(`V__max`*[S])+`k__1`/(`V__max`)+(`K__2`*[S])/(`V__max`)*ⅆs"

 

int(1/(V__max*S)+K__1/V__max+K__2*S/V__max, S = S .. S__0)

 

`assuming`([simplify(combine*(int(1/(V__max*S)+K__1/V__max+K__2*S/V__max, S = S__ .. S__0)), size)], [S > 0, S__0 > S__])

combine*piecewise(And(0 < S__0, S__ < 0), undefined, (1/2)*(K__2*S__0^2-K__2*S__^2+2*S__0*K__1-2*K__1*S__+2*ln(S__0)-2*ln(S__))/V__max)

(1)

 

`assuming`([simplify(int(1/(V__max*S)+K__1/V__max+K__2*S/V__max, S = S__ .. S__0), size)], [S > 0, S__0 > S__])
  piecewise(And(0 < S__0, S__ < 0), undefined, (1/2)*(K__2*S__0^2-K__2*S__^2+2*S__0*K__1-2*K__1*S__+2*ln(S__0)-2*ln(S__))/V__max)NULL

 

 

maple*equation = manual*equation  NULL

(S__0^2*K__2-K__2*S^2+2*S__0*K__1-2*K__1*S+2*ln(S__0)-2*ln(S))/(2*V__max) = (ln(S__0/S)+K__1*(S__0-S)+(1/2)*(-S^2+S__0^2)*K__2)/V__max"(->)"false

   

eq1 := (S__0^2*K__2-K__2*S^2+2*S__0*K__1-2*K__1*S+2*ln(S__0)-2*ln(S))/(2*V__max)

 

eq2 := (ln(S__0/S)+K__1*(S__0-S)+(1/2)*(-S^2+S__0^2)*K__2)/V__max

 

eq1-eq2 = 0"(->)"false

 

(ln(S__0/S)+K__1*(S__0-S)+(1/2)*(-S^2+S__0^2)*K__2)/V__max = (ln(S__0/S)+K__1*(S__0-S)+(1/2)*(-S^2+S__0^2)*K__2)/V__max

 

Download mapleintvsmanualint.mw

The uploaded worksheet defines a surface.

I would like to code a ball rolling across this surface (and others) starting from an initial position on the surface and an initial velocity tangent to the surface, but I don't know how to do this.

What is the combination of physics (including gravity) and math that accomplishes this task?

Ball-rolling-on-a-surface.mw

Is there a trick to make Maple give same result below when using eval and limit?  

Attached worksheet. This comes in context of solving ode  using Laplace. Initial conditions are at zero. And need to solve for the constant of integration. 

It works when using eval, since Dirac(t) becomes Dirac(0), but when using Limit, Dirac(t) becomes zero and the _C1 is lost. I was wondering if limit should also return Dirac(0) like eval?

interface(version);

`Standard Worksheet Interface, Maple 2024.2, Windows 10, October 29 2024 Build ID 1872373`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1838 and is the same as the version installed in this computer, created 2024, December 2, 10:11 hours Pacific Time.`

restart;

e:=1/2*t+_C1*Dirac(t);

(1/2)*t+_C1*Dirac(t)

eval(e,t=0)

_C1*Dirac(0)

limit(e,t=0)

0

 

 

Download dirac_limit_dec_13_2024.mw

Some of the calculations mentioned here can be done in alternative programming languages, such as Python, C, and so on. However, I would like to reproduce exactly these graphs using Maple (without the need for programming commands, such as "if", "while", among others).

In the work I am trying to reproduce, we have "The evaluation of the influence of the inclusion of the broadband behavior of grounding systems in EMT-type programs in the evaluation of transients resulting from direct lightning strikes on transmission lines. The behavior of the grounding frequency is determined using an accurate electromagnetic model and included in the EMTP/ATP by means of an equivalent circuit derived from the Vector Fitting technique. In addition, the impact of the frequency dependence of soil parameters on the lightning performance of transmission lines is addressed." This may seem somewhat disconnected from reality for many, since it is a problem involving electrical engineering optimization.

Could someone help me reproduce these calculations? I have made little significant progress.

If you want to access the reference accounts, I'll send you the PDF

schroeder2017 [link to copyrighted material replaced by moderator]

Hello Dear Maple Users and Experts

I am running this code for N=3, but fsoolve can not work and did not give me any output. Could you help me how can I get the result?

Actually, I got the result for N=2. Exact solution is a[0]=0, a[1]=1, a[2]=1, b[1]^2=sqrt(2) and b[1]^2+b[2]^2=sqrt(3). But, for N=3, I can not receive any results from fsolve

Here is my code

restart;
Digits := 20;
L := 1;
N := 3;
alpha := 1;
xexact := t -> t^sqrt(2) + t^sqrt(3);
f := simplify(fracdiff(t^sqrt(2), t, alpha)) + simplify(fracdiff(t^sqrt(3), t, alpha));
f := unapply(f, t);
xapp := a[0] + sum(a[j]*t^sum(b[i]^2, i = 1 .. j), j = 1 .. N);
xapp := unapply(xapp, t);
xfrac := sum(a[jj]*simplify(GAMMA(sum(b[ii]^2, ii = 1 .. jj) + 1)/GAMMA(sum(b[ii]^2, ii = 1 .. jj) + 1 - alpha))*t^(sum(b[ii]^2, ii = 1 .. jj) - alpha), jj = 1 .. N);
xfrac := unapply(xfrac, t);
xfrac1 := sum(a[jj]*simplify(sum(b[ii]^2, ii = 1 .. jj)^(alpha + 1)/(sum(b[ii]^2, ii = 1 .. jj) - alpha))*t^(sum(b[ii]^2, ii = 1 .. jj) - alpha), jj = 1 .. N);
xfrac1 := unapply(xfrac1, t);
S1 := {seq(evalf(xfrac(k/(2*N)*L)) - evalf(f(k/(2*N)*L)) = 0, k = 1 .. 2*N)};
S2 := {xapp(0) = 0};
S := S1 union S2;
sol := fsolve(S);

I'm evaulating Maple Flow and wondered if any Mathcad users have transferred to Maple Flow?

What are the pros/cons of Maple Flow? It's different to what I'm used to so I need to spend time learning. But I'm liking what I see so far.

Hi,
How can I simplify this relation(See uploaded .mw file)?
For example, the second term is simplified as: 

deltae*(1-phi0/(kappa-3/2))^(-kappa+1/2)+(1/2)*deltab*(1-sqrt(2)*sqrt(1/(m*ub^2))*sqrt(-phi0));

di1.mw

In Latest Maple 2024.2, I found that when doing z:=%  where % is result on integration, causes internal error 

          Error, unexpected result from Typesetting

But when the interface is set to standard, no such error.

This not only happen in worksheet, but also when code is run in command line!

Worksheet below.

interface(version);

`Standard Worksheet Interface, Maple 2024.2, Windows 10, October 29 2024 Build ID 1872373`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1837 and is the same as the version installed in this computer, created 2024, December 2, 10:11 hours Pacific Time.`

Example using extended

 

restart;

interface(typesetting=extended):

int(exp(-int(b(t),t))*t^4*csc(t)^2,t);

int(exp(-(int(b(t), t)))*t^4*csc(t)^2, t)

z:=%;

Error, (in Risch:-Norman) too many levels of recursion

` `

Error, unexpected result from Typesetting

 

Example using standard

 

restart;

interface(typesetting=standard):

int(exp(-int(b(t),t))*t^4*csc(t)^2,t);

int(exp(-(int(b(t), t)))*t^4*csc(t)^2, t)

z:=%;

int(exp(-(int(b(t), t)))*t^4*csc(t)^2, t)

 

 

Example using direct assignment also

 

restart;

interface(typesetting=extended):

z:=int(exp(-int(b(t),t))*t^4*csc(t)^2,t);

Error, (in Risch:-Norman) too many levels of recursion

` `

Error, unexpected result from Typesetting

Download extended_interface_causes_internal_bug_dec_13_2024.mw

ps. also reported to Maple support

I was rejected because the editor said my equation is too long. My question is: Is there a way to rewrite the equation in a more concise form? Additionally, is there a package in Maple that allows for automatic simplification or collection of terms without using specific commands? Any suggestions for addressing this issue would be appreciated.

restart

``

eq3 := -6*lambda*beta[0]^2*alpha[1]^2*a[3]-2*lambda*beta[0]^2*a[5]*alpha[0]+6*mu*beta[0]*alpha[1]^2*a[2]+3*mu*beta[0]*a[5]*alpha[0]^2+(10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*alpha[0]^3*a[4]+(6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*alpha[0]^2*a[3]+(4*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^2*a[5]*alpha[0]-12*mu^2*alpha[1]^2*a[5]*alpha[0]+(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*alpha[0]*a[2]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*k^2*a[1]*alpha[1]^2+(1/2)*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*lambda*a[1]+(5*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^4*alpha[0]*a[4]+(4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*alpha[1]^2*lambda*a[5]*alpha[0]-k^2*a[1]*beta[0]^2+10*beta[0]^2*alpha[0]^3*a[4]+6*beta[0]^2*alpha[0]^2*a[3]+3*beta[0]^2*alpha[0]*a[2]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*w*alpha[1]^2-(1/4)*lambda*beta[0]^2*a[1]-9*mu^2*alpha[1]^2*a[1]*(1/4)+3*mu*a[1]*alpha[0]*beta[0]*(1/2)+(1/4)*(3*(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2))*alpha[1]^2*a[1]+(-(2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda))*lambda+4*mu^2)*alpha[1]^4*a[3]-w*beta[0]^2-30*lambda*beta[0]^2*alpha[1]^2*alpha[0]*a[4]-20*mu*beta[0]*lambda*alpha[1]^4*a[4]-7*mu*beta[0]*lambda*a[5]*alpha[1]^2+24*mu*beta[0]*alpha[1]^2*alpha[0]*a[3]+60*mu*beta[0]*alpha[1]^2*alpha[0]^2*a[4] = 0

-k^2*a[1]*beta[0]^2+4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*lambda*a[5]*alpha[0]-30*lambda*beta[0]^2*alpha[1]^2*alpha[0]*a[4]-20*mu*beta[0]*lambda*alpha[1]^4*a[4]+60*mu*beta[0]*alpha[1]^2*alpha[0]^2*a[4]-7*mu*beta[0]*lambda*a[5]*alpha[1]^2+24*mu*beta[0]*alpha[1]^2*alpha[0]*a[3]-w*beta[0]^2-(9/4)*mu^2*alpha[1]^2*a[1]+6*beta[0]^2*alpha[0]^2*a[3]-(1/4)*lambda*beta[0]^2*a[1]+3*beta[0]^2*alpha[0]*a[2]+(3/4)*(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^2*a[1]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*w*alpha[1]^2+10*beta[0]^2*alpha[0]^3*a[4]+(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^4*a[3]+6*mu*beta[0]*alpha[1]^2*a[2]+3*mu*beta[0]*a[5]*alpha[0]^2+(3/2)*mu*a[1]*alpha[0]*beta[0]-6*lambda*beta[0]^2*alpha[1]^2*a[3]-2*lambda*beta[0]^2*a[5]*alpha[0]-12*mu^2*alpha[1]^2*a[5]*alpha[0]+3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*alpha[0]*a[2]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*k^2*a[1]*alpha[1]^2+(1/2)*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*lambda*a[1]+5*(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^4*alpha[0]*a[4]+10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*alpha[0]^3*a[4]+6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*alpha[0]^2*a[3]+4*(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^2*a[5]*alpha[0] = 0

(1)

numer(lhs(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*alpha[0]*a[2]+5*(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^4*alpha[0]*a[4]+10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*alpha[0]^3*a[4]+6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*alpha[0]^2*a[3]+4*(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^2*a[5]*alpha[0]-6*lambda*beta[0]^2*alpha[1]^2*a[3]-2*lambda*beta[0]^2*a[5]*alpha[0]+6*mu*beta[0]*alpha[1]^2*a[2]+3*mu*beta[0]*a[5]*alpha[0]^2+(3/2)*mu*a[1]*alpha[0]*beta[0]-12*mu^2*alpha[1]^2*a[5]*alpha[0]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*k^2*a[1]*alpha[1]^2+(1/2)*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*lambda*a[1]-w*beta[0]^2+4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*lambda*a[5]*alpha[0]-30*lambda*beta[0]^2*alpha[1]^2*alpha[0]*a[4]-20*mu*beta[0]*lambda*alpha[1]^4*a[4]-7*mu*beta[0]*lambda*a[5]*alpha[1]^2+24*mu*beta[0]*alpha[1]^2*alpha[0]*a[3]+60*mu*beta[0]*alpha[1]^2*alpha[0]^2*a[4]+(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^4*a[3]+(3/4)*(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^2*a[1]-k^2*a[1]*beta[0]^2+10*beta[0]^2*alpha[0]^3*a[4]+6*beta[0]^2*alpha[0]^2*a[3]+3*beta[0]^2*alpha[0]*a[2]-(9/4)*mu^2*alpha[1]^2*a[1]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*w*alpha[1]^2-(1/4)*lambda*beta[0]^2*a[1] = 0))*denom(rhs(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*alpha[0]*a[2]+5*(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^4*alpha[0]*a[4]+10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*alpha[0]^3*a[4]+6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*alpha[0]^2*a[3]+4*(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^2*a[5]*alpha[0]-6*lambda*beta[0]^2*alpha[1]^2*a[3]-2*lambda*beta[0]^2*a[5]*alpha[0]+6*mu*beta[0]*alpha[1]^2*a[2]+3*mu*beta[0]*a[5]*alpha[0]^2+(3/2)*mu*a[1]*alpha[0]*beta[0]-12*mu^2*alpha[1]^2*a[5]*alpha[0]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*k^2*a[1]*alpha[1]^2+(1/2)*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*lambda*a[1]-w*beta[0]^2+4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*lambda*a[5]*alpha[0]-30*lambda*beta[0]^2*alpha[1]^2*alpha[0]*a[4]-20*mu*beta[0]*lambda*alpha[1]^4*a[4]-7*mu*beta[0]*lambda*a[5]*alpha[1]^2+24*mu*beta[0]*alpha[1]^2*alpha[0]*a[3]+60*mu*beta[0]*alpha[1]^2*alpha[0]^2*a[4]+(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^4*a[3]+(3/4)*(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^2*a[1]-k^2*a[1]*beta[0]^2+10*beta[0]^2*alpha[0]^3*a[4]+6*beta[0]^2*alpha[0]^2*a[3]+3*beta[0]^2*alpha[0]*a[2]-(9/4)*mu^2*alpha[1]^2*a[1]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*w*alpha[1]^2-(1/4)*lambda*beta[0]^2*a[1] = 0)) = numer(rhs(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*alpha[0]*a[2]+5*(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^4*alpha[0]*a[4]+10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*alpha[0]^3*a[4]+6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*alpha[0]^2*a[3]+4*(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^2*a[5]*alpha[0]-6*lambda*beta[0]^2*alpha[1]^2*a[3]-2*lambda*beta[0]^2*a[5]*alpha[0]+6*mu*beta[0]*alpha[1]^2*a[2]+3*mu*beta[0]*a[5]*alpha[0]^2+(3/2)*mu*a[1]*alpha[0]*beta[0]-12*mu^2*alpha[1]^2*a[5]*alpha[0]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*k^2*a[1]*alpha[1]^2+(1/2)*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*lambda*a[1]-w*beta[0]^2+4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*lambda*a[5]*alpha[0]-30*lambda*beta[0]^2*alpha[1]^2*alpha[0]*a[4]-20*mu*beta[0]*lambda*alpha[1]^4*a[4]-7*mu*beta[0]*lambda*a[5]*alpha[1]^2+24*mu*beta[0]*alpha[1]^2*alpha[0]*a[3]+60*mu*beta[0]*alpha[1]^2*alpha[0]^2*a[4]+(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^4*a[3]+(3/4)*(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^2*a[1]-k^2*a[1]*beta[0]^2+10*beta[0]^2*alpha[0]^3*a[4]+6*beta[0]^2*alpha[0]^2*a[3]+3*beta[0]^2*alpha[0]*a[2]-(9/4)*mu^2*alpha[1]^2*a[1]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*w*alpha[1]^2-(1/4)*lambda*beta[0]^2*a[1] = 0))*denom(lhs(3*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*alpha[0]*a[2]+5*(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^4*alpha[0]*a[4]+10*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*alpha[0]^3*a[4]+6*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*alpha[0]^2*a[3]+4*(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^2*a[5]*alpha[0]-6*lambda*beta[0]^2*alpha[1]^2*a[3]-2*lambda*beta[0]^2*a[5]*alpha[0]+6*mu*beta[0]*alpha[1]^2*a[2]+3*mu*beta[0]*a[5]*alpha[0]^2+(3/2)*mu*a[1]*alpha[0]*beta[0]-12*mu^2*alpha[1]^2*a[5]*alpha[0]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*k^2*a[1]*alpha[1]^2+(1/2)*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*lambda*a[1]-w*beta[0]^2+4*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*alpha[1]^2*lambda*a[5]*alpha[0]-30*lambda*beta[0]^2*alpha[1]^2*alpha[0]*a[4]-20*mu*beta[0]*lambda*alpha[1]^4*a[4]-7*mu*beta[0]*lambda*a[5]*alpha[1]^2+24*mu*beta[0]*alpha[1]^2*alpha[0]*a[3]+60*mu*beta[0]*alpha[1]^2*alpha[0]^2*a[4]+(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^4*a[3]+(3/4)*(-2*(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*lambda+4*mu^2)*alpha[1]^2*a[1]-k^2*a[1]*beta[0]^2+10*beta[0]^2*alpha[0]^3*a[4]+6*beta[0]^2*alpha[0]^2*a[3]+3*beta[0]^2*alpha[0]*a[2]-(9/4)*mu^2*alpha[1]^2*a[1]-(lambda*B[1]^2-lambda*B[2]^2-mu^2/lambda)*w*alpha[1]^2-(1/4)*lambda*beta[0]^2*a[1] = 0))

-40*lambda^3*B[1]^2*a[4]*alpha[0]*alpha[1]^4+40*lambda^3*B[2]^2*a[4]*alpha[0]*alpha[1]^4-8*lambda^3*B[1]^2*a[3]*alpha[1]^4+8*lambda^3*B[2]^2*a[3]*alpha[1]^4+40*lambda^2*B[1]^2*a[4]*alpha[0]^3*alpha[1]^2-40*lambda^2*B[2]^2*a[4]*alpha[0]^3*alpha[1]^2-4*k^2*lambda^2*B[1]^2*a[1]*alpha[1]^2+4*k^2*lambda^2*B[2]^2*a[1]*alpha[1]^2-16*lambda^3*B[1]^2*a[5]*alpha[0]*alpha[1]^2+16*lambda^3*B[2]^2*a[5]*alpha[0]*alpha[1]^2-80*lambda^2*mu*a[4]*alpha[1]^4*beta[0]+24*lambda^2*B[1]^2*a[3]*alpha[0]^2*alpha[1]^2-24*lambda^2*B[2]^2*a[3]*alpha[0]^2*alpha[1]^2+120*lambda*mu^2*a[4]*alpha[0]*alpha[1]^4-4*lambda^3*B[1]^2*a[1]*alpha[1]^2+4*lambda^3*B[2]^2*a[1]*alpha[1]^2+12*lambda^2*B[1]^2*a[2]*alpha[0]*alpha[1]^2-12*lambda^2*B[2]^2*a[2]*alpha[0]*alpha[1]^2-120*lambda^2*a[4]*alpha[0]*alpha[1]^2*beta[0]^2+24*lambda*mu^2*a[3]*alpha[1]^4+240*lambda*mu*a[4]*alpha[0]^2*alpha[1]^2*beta[0]-40*mu^2*a[4]*alpha[0]^3*alpha[1]^2+4*k^2*mu^2*a[1]*alpha[1]^2-28*lambda^2*mu*a[5]*alpha[1]^2*beta[0]-4*lambda^2*w*B[1]^2*alpha[1]^2+4*lambda^2*w*B[2]^2*alpha[1]^2-24*lambda^2*a[3]*alpha[1]^2*beta[0]^2+32*lambda*mu^2*a[5]*alpha[0]*alpha[1]^2+96*lambda*mu*a[3]*alpha[0]*alpha[1]^2*beta[0]+40*lambda*a[4]*alpha[0]^3*beta[0]^2-24*mu^2*a[3]*alpha[0]^2*alpha[1]^2-4*k^2*lambda*a[1]*beta[0]^2-8*lambda^2*a[5]*alpha[0]*beta[0]^2+7*lambda*mu^2*a[1]*alpha[1]^2+24*lambda*mu*a[2]*alpha[1]^2*beta[0]+12*lambda*mu*a[5]*alpha[0]^2*beta[0]+24*lambda*a[3]*alpha[0]^2*beta[0]^2-12*mu^2*a[2]*alpha[0]*alpha[1]^2-lambda^2*a[1]*beta[0]^2+6*lambda*mu*a[1]*alpha[0]*beta[0]+12*lambda*a[2]*alpha[0]*beta[0]^2+4*mu^2*w*alpha[1]^2-4*lambda*w*beta[0]^2 = 0

(2)

simplify(-40*lambda^3*B[1]^2*a[4]*alpha[0]*alpha[1]^4+40*lambda^3*B[2]^2*a[4]*alpha[0]*alpha[1]^4-8*lambda^3*B[1]^2*a[3]*alpha[1]^4+8*lambda^3*B[2]^2*a[3]*alpha[1]^4+40*lambda^2*B[1]^2*a[4]*alpha[0]^3*alpha[1]^2-40*lambda^2*B[2]^2*a[4]*alpha[0]^3*alpha[1]^2-4*k^2*lambda^2*B[1]^2*a[1]*alpha[1]^2+4*k^2*lambda^2*B[2]^2*a[1]*alpha[1]^2-16*lambda^3*B[1]^2*a[5]*alpha[0]*alpha[1]^2+16*lambda^3*B[2]^2*a[5]*alpha[0]*alpha[1]^2-80*lambda^2*mu*a[4]*alpha[1]^4*beta[0]+24*lambda^2*B[1]^2*a[3]*alpha[0]^2*alpha[1]^2-24*lambda^2*B[2]^2*a[3]*alpha[0]^2*alpha[1]^2+120*lambda*mu^2*a[4]*alpha[0]*alpha[1]^4-4*lambda^3*B[1]^2*a[1]*alpha[1]^2+4*lambda^3*B[2]^2*a[1]*alpha[1]^2+12*lambda^2*B[1]^2*a[2]*alpha[0]*alpha[1]^2-12*lambda^2*B[2]^2*a[2]*alpha[0]*alpha[1]^2-120*lambda^2*a[4]*alpha[0]*alpha[1]^2*beta[0]^2+24*lambda*mu^2*a[3]*alpha[1]^4+240*lambda*mu*a[4]*alpha[0]^2*alpha[1]^2*beta[0]-40*mu^2*a[4]*alpha[0]^3*alpha[1]^2+4*k^2*mu^2*a[1]*alpha[1]^2-28*lambda^2*mu*a[5]*alpha[1]^2*beta[0]-4*lambda^2*w*B[1]^2*alpha[1]^2+4*lambda^2*w*B[2]^2*alpha[1]^2-24*lambda^2*a[3]*alpha[1]^2*beta[0]^2+32*lambda*mu^2*a[5]*alpha[0]*alpha[1]^2+96*lambda*mu*a[3]*alpha[0]*alpha[1]^2*beta[0]+40*lambda*a[4]*alpha[0]^3*beta[0]^2-24*mu^2*a[3]*alpha[0]^2*alpha[1]^2-4*k^2*lambda*a[1]*beta[0]^2-8*lambda^2*a[5]*alpha[0]*beta[0]^2+7*lambda*mu^2*a[1]*alpha[1]^2+24*lambda*mu*a[2]*alpha[1]^2*beta[0]+12*lambda*mu*a[5]*alpha[0]^2*beta[0]+24*lambda*a[3]*alpha[0]^2*beta[0]^2-12*mu^2*a[2]*alpha[0]*alpha[1]^2-lambda^2*a[1]*beta[0]^2+6*lambda*mu*a[1]*alpha[0]*beta[0]+12*lambda*a[2]*alpha[0]*beta[0]^2+4*mu^2*w*alpha[1]^2-4*lambda*w*beta[0]^2 = 0, 'symbolic')

-40*(B[1]-B[2])*((a[4]*alpha[0]+(1/5)*a[3])*alpha[1]^2+(2/5)*a[5]*alpha[0]+(1/10)*a[1])*alpha[1]^2*(B[1]+B[2])*lambda^3+4*(-20*a[4]*beta[0]*alpha[1]^4*mu+(10*(B[1]^2-B[2]^2)*a[4]*alpha[0]^3+6*a[3]*(B[1]^2-B[2]^2)*alpha[0]^2+3*(B[1]^2*a[2]-B[2]^2*a[2]-10*a[4]*beta[0]^2)*alpha[0]-6*beta[0]^2*a[3]-7*a[5]*beta[0]*mu-(B[1]-B[2])*(B[1]+B[2])*(k^2*a[1]+w))*alpha[1]^2-2*(a[5]*alpha[0]+(1/8)*a[1])*beta[0]^2)*lambda^2+(120*(a[4]*alpha[0]+(1/5)*a[3])*mu^2*alpha[1]^4+(240*a[4]*beta[0]*alpha[0]^2*mu+32*(mu^2*a[5]+3*mu*a[3]*beta[0])*alpha[0]+24*beta[0]*mu*a[2]+7*mu^2*a[1])*alpha[1]^2-4*(-10*a[4]*beta[0]*alpha[0]^3+3*(-mu*a[5]-2*a[3]*beta[0])*alpha[0]^2+3*(-beta[0]*a[2]-(1/2)*mu*a[1])*alpha[0]+beta[0]*(k^2*a[1]+w))*beta[0])*lambda+4*alpha[1]^2*mu^2*(-10*a[4]*alpha[0]^3+k^2*a[1]-6*a[3]*alpha[0]^2-3*a[2]*alpha[0]+w) = 0

 

 

 

Error, (in collect) invalid input: collect uses a 2nd argument, x, which is missing

 

Q1 := collect(%, {B__1, B__2})

-40*(B[1]-B[2])*((a[4]*alpha[0]+(1/5)*a[3])*alpha[1]^2+(2/5)*a[5]*alpha[0]+(1/10)*a[1])*alpha[1]^2*(B[1]+B[2])*lambda^3+4*(-20*a[4]*beta[0]*alpha[1]^4*mu+(10*(B[1]^2-B[2]^2)*a[4]*alpha[0]^3+6*a[3]*(B[1]^2-B[2]^2)*alpha[0]^2+3*(B[1]^2*a[2]-B[2]^2*a[2]-10*a[4]*beta[0]^2)*alpha[0]-6*beta[0]^2*a[3]-7*a[5]*beta[0]*mu-(B[1]-B[2])*(B[1]+B[2])*(k^2*a[1]+w))*alpha[1]^2-2*(a[5]*alpha[0]+(1/8)*a[1])*beta[0]^2)*lambda^2+(120*(a[4]*alpha[0]+(1/5)*a[3])*mu^2*alpha[1]^4+(240*a[4]*beta[0]*alpha[0]^2*mu+32*(mu^2*a[5]+3*mu*a[3]*beta[0])*alpha[0]+24*beta[0]*mu*a[2]+7*mu^2*a[1])*alpha[1]^2-4*(-10*a[4]*beta[0]*alpha[0]^3+3*(-mu*a[5]-2*a[3]*beta[0])*alpha[0]^2+3*(-beta[0]*a[2]-(1/2)*mu*a[1])*alpha[0]+beta[0]*(k^2*a[1]+w))*beta[0])*lambda+4*alpha[1]^2*mu^2*(-10*a[4]*alpha[0]^3+k^2*a[1]-6*a[3]*alpha[0]^2-3*a[2]*alpha[0]+w) = 0

(3)

latex(Q1)

-40 \left(B_{1}-B_{2}\right) \left(\left(a_{4} \alpha_{0}+\frac{a_{3}}{5}\right) \alpha_{1}^{2}+\frac{2 a_{5} \alpha_{0}}{5}+\frac{a_{1}}{10}\right) \alpha_{1}^{2} \left(B_{1}+B_{2}\right) \lambda^{3}+4 \left(-20 a_{4} \beta_{0} \alpha_{1}^{4} \mu +\left(10 \left(B_{1}^{2}-B_{2}^{2}\right) a_{4} \alpha_{0}^{3}+6 a_{3} \left(B_{1}^{2}-B_{2}^{2}\right) \alpha_{0}^{2}+3 \left(B_{1}^{2} a_{2}-B_{2}^{2} a_{2}-10 a_{4} \beta_{0}^{2}\right) \alpha_{0}-6 \beta_{0}^{2} a_{3}-7 a_{5} \beta_{0} \mu -\left(B_{1}-B_{2}\right) \left(B_{1}+B_{2}\right) \left(k^{2} a_{1}+w \right)\right) \alpha_{1}^{2}-2 \left(a_{5} \alpha_{0}+\frac{a_{1}}{8}\right) \beta_{0}^{2}\right) \lambda^{2}+\left(120 \left(a_{4} \alpha_{0}+\frac{a_{3}}{5}\right) \mu^{2} \alpha_{1}^{4}+\left(240 a_{4} \beta_{0} \alpha_{0}^{2} \mu +32 \left(\mu^{2} a_{5}+3 \mu  a_{3} \beta_{0}\right) \alpha_{0}+24 \beta_{0} \mu  a_{2}+7 \mu^{2} a_{1}\right) \alpha_{1}^{2}-4 \left(-10 a_{4} \beta_{0} \alpha_{0}^{3}+3 \left(-\mu  a_{5}-2 a_{3} \beta_{0}\right) \alpha_{0}^{2}+3 \left(-\beta_{0} a_{2}-\frac{\mu  a_{1}}{2}\right) \alpha_{0}+\beta_{0} \left(k^{2} a_{1}+w \right)\right) \beta_{0}\right) \lambda +4 \alpha_{1}^{2} \mu^{2} \left(-10 a_{4} \alpha_{0}^{3}+k^{2} a_{1}-6 a_{3} \alpha_{0}^{2}-3 a_{2} \alpha_{0}+w \right)
 = 0

 
 

NULL

Download coment.mw

hi,

I would like help with 2 questions regarding complex plots and Euler's formula:

- I'm trying to plot a complex (simple) plot in Maple Flow (2024.2) but got into a problem:

does anyone would know how to fix/solve it?

- how could an complex exponential function be expanded with Euler's formula

Thanks very much in advance.

Where can I found details about Statistics:-Sample(..., method=envelope).

It would be nice to have a link to a description of the envelope method Sample uses.
For instance does it share some features of the Cuba library for numeric integration? Does it use the same envelope method evalf/Int(..., method=_CubaSuave)) uses?

Thanks in advance.

This is my first time solving an equation where the solution includes a function W(t). I'm not sure how to work with it. Does anyone have insights about this function? I also don't have much knowledge about stochastic processes, which I think might be related. How can I gather enough information to understand and plot such a function?
in that paper i saw he talk about wiener process!

restart;

local gamma;

gamma

(1)

``

T3 := (B[1]*(coth(2*n^2*(delta^2-w)*k*t/((k*n-1)*(k*n+1))+x)-1))^(1/(2*n))*exp(I*(-k*x+w*t+delta*W(t)-delta^2*t))

(B[1]*(coth(2*n^2*(delta^2-w)*k*t/((k*n-1)*(k*n+1))+x)-1))^((1/2)/n)*exp(I*(-k*x+w*t+delta*W(t)-delta^2*t))

(2)

``

params := {B[1]=1,n=2,delta=1,w=1,k=3 };

{delta = 1, k = 3, n = 2, w = 1, B[1] = 1}

(3)

``

insert numerical values

solnum :=subs(params, T3);

(coth(x)-1)^(1/4)*exp(I*(-3*x+W(t)))

(4)

``

P := Array(1 .. 2); P[1] := plot3d(map(Re, solnum), x = -2 .. 2, t = 0 .. 10, title = Re); P[2] := plot3d(map(Im, solnum), x = -20 .. 20, t = -10 .. 10, title = Im); plots:-display(P)

 

 

 

 

 

plot3d(map(abs, solnum), x = -10 .. 10, t = 0 .. 5)

 

 

Download graph-stochastic.mw

I'm having trouble solving this system of differential equations. I haven't solved systems of differential equations before but i tried defining the system and then using dsolve, but it couldn't solve all the equations.

Hope you can help.

NULL

diff(Q1(t), t) = -k1*Q1(t)

 

diff(Q2(t), t) = k1*Q1+k3/Q2(t)-k2*Q2(t)-k4*Q2(t)

 

diff(Q3(t), t) = k4*Q2

 

diff(Q4(t), t) = k2*Q2-k3/Q2

 

NULL

Download System_Of_Differential_Equations.mw

I'm trying to transform a partial differential equation (PDE) into an ordinary differential equation (ODE) as demonstrated in the paper. However, I find some steps confusing and difficult to follow. The process often feels chaotic, and managing the complexity of the equations is overwhelming. Could you suggest an effective and systematic method to handle such transformations more easily?

restart

with(PDEtools)

with(LinearAlgebra)

NULL

with(SolveTools)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

declare(Omega(x, t)); declare(U(xi))

Omega(x, t)*`will now be displayed as`*Omega

 

U(xi)*`will now be displayed as`*U

(2)

tr := {t = tau, x = tau*c[0]+xi, Omega(x, t) = U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))}

{t = tau, x = tau*c[0]+xi, Omega(x, t) = U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))}

(3)

P1 := diff(Omega(x, t)^m, t)

Omega(x, t)^m*m*(diff(Omega(x, t), t))/Omega(x, t)

(4)

L1 := PDEtools:-dchange(tr, P1, [xi, tau, U])

(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m*m*(-((diff(U(xi), xi))*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-I*U(xi)*k*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))*c[0]+I*U(xi)*(-k*c[0]+w+delta*(diff(W(tau), tau))-delta^2)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))/(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))

(5)
 

pde1 := I*(diff(Omega(x, t)^m, t))+alpha*(diff(Omega(x, t)^m, `$`(x, 2)))+I*beta*(diff(abs(Omega(x, t))^(2*n)*Omega(x, t)^m, x))+m*sigma*Omega(x, t)^m*(diff(W(t), t)) = I*gamma*abs(Omega(x, t))^(2*n)*(diff(Omega(x, t)^m, x))+delta*abs(Omega(x, t))^(4*n)*Omega(x, t)^m

I*Omega(x, t)^m*m*(diff(Omega(x, t), t))/Omega(x, t)+alpha*(Omega(x, t)^m*m^2*(diff(Omega(x, t), x))^2/Omega(x, t)^2+Omega(x, t)^m*m*(diff(diff(Omega(x, t), x), x))/Omega(x, t)-Omega(x, t)^m*m*(diff(Omega(x, t), x))^2/Omega(x, t)^2)+I*beta*(2*abs(Omega(x, t))^(2*n)*n*(diff(Omega(x, t), x))*abs(1, Omega(x, t))*Omega(x, t)^m/abs(Omega(x, t))+abs(Omega(x, t))^(2*n)*Omega(x, t)^m*m*(diff(Omega(x, t), x))/Omega(x, t))+m*sigma*Omega(x, t)^m*(diff(W(t), t)) = I*gamma*abs(Omega(x, t))^(2*n)*Omega(x, t)^m*m*(diff(Omega(x, t), x))/Omega(x, t)+delta*abs(Omega(x, t))^(4*n)*Omega(x, t)^m

(6)

NULL

L1 := PDEtools:-dchange(tr, pde1, [xi, tau, U])

I*(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m*m*(-((diff(U(xi), xi))*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-I*U(xi)*k*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))*c[0]+I*U(xi)*(-k*c[0]+w+delta*(diff(W(tau), tau))-delta^2)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))/(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))+alpha*((U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m*m^2*((diff(U(xi), xi))*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-I*U(xi)*k*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^2/(U(xi)^2*(exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^2)+(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m*m*((diff(diff(U(xi), xi), xi))*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-(2*I)*(diff(U(xi), xi))*k*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-U(xi)*k^2*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))/(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))-(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m*m*((diff(U(xi), xi))*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-I*U(xi)*k*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^2/(U(xi)^2*(exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^2))+I*beta*(2*(abs(U(xi))*exp(-Im(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^(2*n)*n*((diff(U(xi), xi))*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-I*U(xi)*k*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))*abs(1, U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))*(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m/(abs(U(xi))*exp(-Im(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))+(abs(U(xi))*exp(-Im(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^(2*n)*(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m*m*((diff(U(xi), xi))*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-I*U(xi)*k*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))/(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))))+m*sigma*(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m*(diff(W(tau), tau)) = I*gamma*(abs(U(xi))*exp(-Im(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^(2*n)*(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m*m*((diff(U(xi), xi))*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau))-I*U(xi)*k*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))/(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))+delta*(abs(U(xi))*exp(-Im(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^(4*n)*(U(xi)*exp(I*(-k*(tau*c[0]+xi)+w*tau+delta*W(tau)-delta^2*tau)))^m

(7)

``

``

(8)

Download transform-pde-to-ode-hard_example.mw

I have expected the opposite. Is exp already optimised that hardware floats do not make sense or does the conversion of the argument to hardware floast eats up all the benefit of using hardware floats?

restart;
CodeTools:-Usage( for i from 1 to 100 by 0.1 do exp(i) end do):
CodeTools:-Usage( for i from 1 to 100 by 0.1 do (evalhf@exp)(i) end do):
memory used=1.54MiB, alloc change=0 bytes, cpu time=16.00ms, real time=15.00ms, gc time=0ns
memory used=5.88MiB, alloc change=32.00MiB, cpu time=31.00ms, real time=33.00ms, gc time=0ns
1 2 3 4 5 6 7 Last Page 1 of 2377