MaplePrimes Questions

Search Questions:

Hi, can someone explain me why CodeGeneration in C throws the error : Error, (in Print) improper op or subscript selector ? Interestingly, CodeGeneration in Python or Matlab works. Source code is attached. Thanks in advance!

membrane_energy.mw
 

 

Membrane Energy

 

restart; with(VectorCalculus); with(LinearAlgebra); with(CodeGeneration)

Define variables

 

Vectors for vertices of current position

v1 := Vector(3, symbol = v1_i) = Vector[column]([[v1_i[1]], [v1_i[2]], [v1_i[3]]], ["x", "y", "z"]) 

v2 := Vector(3, symbol = v2_i) = Vector[column]([[v2_i[1]], [v2_i[2]], [v2_i[3]]], ["x", "y", "z"])NULL

v3 := Vector(3, symbol = v3_i) = Vector[column]([[v3_i[1]], [v3_i[2]], [v3_i[3]]], ["x", "y", "z"])NULL

n := `&x`(v2-v1, v3-v1)

v4 := v1+n/norm(n, 2)^.5

Vector for vertices of next position

v1n := Vector(3, symbol = v1n_i) = Vector[column]([[v1n_i[1]], [v1n_i[2]], [v1n_i[3]]], ["x", "y", "z"])NULL

v2n := Vector(3, symbol = v2n_i) = Vector[column]([[v2n_i[1]], [v2n_i[2]], [v2n_i[3]]], ["x", "y", "z"])NULL

v3n := Vector(3, symbol = v3n_i) = Vector[column]([[v3n_i[1]], [v3n_i[2]], [v3n_i[3]]], ["x", "y", "z"])NULL

nn := `&x`(v2n-v1n, v3n-v1n)

v4n := v1n+nn/norm(nn, 2)^.5``

``

 

Define Transformation

 

V := LinearAlgebra:-Transpose(Matrix([v2-v1, v3-v1, v4-v1]))

Dimension(V) = 3, 3 

Vn := LinearAlgebra:-Transpose(Matrix([v2n-v1n, v3n-v1n, v4n-v1n]))

Dimension(Vn) = 3, 3NULL

Note we have Vn = T*V and if the current triangle is not degenerate, then T = Vn/V. As we can pre-compute 1/V we define a new matrix for it:

Vinv := Matrix(3, 3, symbol = Vinv_ij) =

Matrix(%id = 18446746713267339006)

(1.2.1)

T := MatrixMatrixMultiply(Vn, Vinv)

Dimension(T) = 3, 3``

``

``

Define Energy

 

E := Trace(MatrixMatrixMultiply(T, LinearAlgebra:-Transpose(T)))``

``

``

Gradient and Hessian

 

gradE := Gradient(E, [v1n[1], v1n[2], v1n[3], v2n[1], v2n[2], v2n[3], v3n[1], v3n[2], v3n[3]])

Dimension(gradE) = 9NULL

CodeGeneration[C](gradE, defaulttype = numeric, optimize = tryhard, functionprecision = double, precision = double, deducetypes = false, resultname = 'gradE')t1 = v2n_i[0] - v1n_i[0];
t2 = v2n_i[1] - v1n_i[1];
t3 = v2n_i[2] - v1n_i[2];
t4 = t1 * Vinv_ij[0][0] + t2 * Vinv_ij[1][0] + t3 * Vinv_ij[2][0];
t5 = t1 * Vinv_ij[0][1] + t2 * Vinv_ij[1][1] + t3 * Vinv_ij[2][1];
t6 = t1 * Vinv_ij[0][2] + t2 * Vinv_ij[1][2] + t3 * Vinv_ij[2][2];
t7 = v3n_i[0] - v1n_i[0];
t8 = v3n_i[1] - v1n_i[1];
t9 = v3n_i[2] - v1n_i[2];
t10 = t7 * Vinv_ij[0][0] + t8 * Vinv_ij[1][0] + t9 * Vinv_ij[2][0];
t11 = t7 * Vinv_ij[0][1] + t8 * Vinv_ij[1][1] + t9 * Vinv_ij[2][1];
t12 = t7 * Vinv_ij[0][2] + t8 * Vinv_ij[1][2] + t9 * Vinv_ij[2][2];
t13 = t2 * t9 - t3 * t8;
t14 = fabs(t13);
t15 = t1 * t9 - t3 * t7;
t16 = fabs(t15);
t17 = t1 * t8 - t2 * t7;
t18 = fabs(t17);
t19 = pow(t14, 0.2e1) + pow(t16, 0.2e1) + pow(t18, 0.2e1);
t20 = pow(t19, -0.5e1 / 0.4e1);
t19 = t19 * t20;
t21 = Vinv_ij[0][0] * t13;
t22 = Vinv_ij[1][0] * t15;
t23 = Vinv_ij[2][0] * t17;
t24 = (t23 + t21 - t22) * t19;
t25 = -v2n_i[2] + v3n_i[2];
t26 = fabs(t15) / t15;
t27 = -v2n_i[1] + v3n_i[1];
t28 = fabs(t17) / t17;
t21 = t23 + t21 - t22;
t22 = (t16 * t25 * t26 + t18 * t27 * t28) * t20;
t23 = 0.1e1 / 0.2e1;
t29 = Vinv_ij[0][1] * t13;
t30 = Vinv_ij[1][1] * t15;
t31 = Vinv_ij[2][1] * t17;
t32 = (t31 + t29 - t30) * t19;
t29 = t31 + t29 - t30;
t30 = Vinv_ij[0][2] * t13;
t15 = Vinv_ij[1][2] * t15;
t17 = Vinv_ij[2][2] * t17;
t31 = (t17 + t30 - t15) * t19;
t15 = t17 + t30 - t15;
t17 = t6 + t12;
t30 = t5 + t11;
t33 = t4 + t10;
t13 = fabs(t13) / t13;
t34 = -v2n_i[0] + v3n_i[0];
t35 = (t14 * t25 * t13 - t18 * t34 * t28) * t20;
t35 = t17 * Vinv_ij[1][2] - t24 * (t23 * t35 * t21 - t19 * (t25 * Vinv_ij[0][0] - t34 * Vinv_ij[2][0])) + t30 * Vinv_ij[1][1] - t31 * (t23 * t35 * t15 - t19 * (t25 * Vinv_ij[0][2] - t34 * Vinv_ij[2][2])) - t32 * (t23 * t35 * t29 - t19 * (t25 * Vinv_ij[0][1] - t34 * Vinv_ij[2][1])) + t33 * Vinv_ij[1][0];
t36 = (t14 * t27 * t13 + t16 * t34 * t26) * t20;
t34 = Vinv_ij[2][2] * t17 - t24 * (-t23 * t36 * t21 + t19 * (t27 * Vinv_ij[0][0] - t34 * Vinv_ij[1][0])) + t30 * Vinv_ij[2][1] - t31 * (-t23 * t36 * t15 + t19 * (t27 * Vinv_ij[0][2] - t34 * Vinv_ij[1][2])) - t32 * (-t23 * t36 * t29 + t19 * (t27 * Vinv_ij[0][1] - t34 * Vinv_ij[1][1])) + t33 * Vinv_ij[2][0];
t36 = (t16 * t9 * t26 + t18 * t8 * t28) * t20;
t36 = t24 * (-t23 * t36 * t21 - t19 * (-t8 * Vinv_ij[2][0] + t9 * Vinv_ij[1][0])) + t31 * (-t23 * t36 * t15 - t19 * (-t8 * Vinv_ij[2][2] + t9 * Vinv_ij[1][2])) + t32 * (-t23 * t36 * t29 - t19 * (-t8 * Vinv_ij[2][1] + t9 * Vinv_ij[1][1])) + t4 * Vinv_ij[0][0] + t5 * Vinv_ij[0][1] + t6 * Vinv_ij[0][2];
t37 = (t14 * t9 * t13 - t18 * t7 * t28) * t20;
t9 = t24 * (-t23 * t37 * t21 + t19 * (-t7 * Vinv_ij[2][0] + t9 * Vinv_ij[0][0])) + t31 * (-t15 * t23 * t37 + t19 * (-t7 * Vinv_ij[2][2] + t9 * Vinv_ij[0][2])) + t32 * (-t23 * t29 * t37 + t19 * (-t7 * Vinv_ij[2][1] + t9 * Vinv_ij[0][1])) + t4 * Vinv_ij[1][0] + t5 * Vinv_ij[1][1] + t6 * Vinv_ij[1][2];
t37 = (t14 * t8 * t13 + t16 * t7 * t26) * t20;
t4 = t24 * (t23 * t37 * t21 - t19 * (-t7 * Vinv_ij[1][0] + t8 * Vinv_ij[0][0])) + t31 * (t15 * t23 * t37 - t19 * (-t7 * Vinv_ij[1][2] + t8 * Vinv_ij[0][2])) + t32 * (t23 * t29 * t37 - t19 * (-t7 * Vinv_ij[1][1] + t8 * Vinv_ij[0][1])) + t4 * Vinv_ij[2][0] + t5 * Vinv_ij[2][1] + t6 * Vinv_ij[2][2];
t5 = (t16 * t3 * t26 + t18 * t2 * t28) * t20;
t5 = t10 * Vinv_ij[0][0] + t11 * Vinv_ij[0][1] + t12 * Vinv_ij[0][2] + t24 * (t21 * t23 * t5 + t19 * (-t2 * Vinv_ij[2][0] + t3 * Vinv_ij[1][0])) + t31 * (t15 * t23 * t5 + t19 * (-t2 * Vinv_ij[2][2] + t3 * Vinv_ij[1][2])) + t32 * (t23 * t29 * t5 + t19 * (-t2 * Vinv_ij[2][1] + t3 * Vinv_ij[1][1]));
t6 = (-t18 * t1 * t28 + t14 * t3 * t13) * t20;
t3 = t10 * Vinv_ij[1][0] + t11 * Vinv_ij[1][1] + t12 * Vinv_ij[1][2] + t24 * (t21 * t23 * t6 - t19 * (-t1 * Vinv_ij[2][0] + t3 * Vinv_ij[0][0])) + t31 * (t15 * t23 * t6 - t19 * (-t1 * Vinv_ij[2][2] + t3 * Vinv_ij[0][2])) + t32 * (t23 * t29 * t6 - t19 * (-t1 * Vinv_ij[2][1] + t3 * Vinv_ij[0][1]));
t6 = (t16 * t1 * t26 + t14 * t2 * t13) * t20;
t1 = t10 * Vinv_ij[2][0] + t11 * Vinv_ij[2][1] + t12 * Vinv_ij[2][2] + t24 * (-t21 * t23 * t6 + t19 * (-t1 * Vinv_ij[1][0] + t2 * Vinv_ij[0][0])) + t31 * (-t15 * t23 * t6 + t19 * (-t1 * Vinv_ij[1][2] + t2 * Vinv_ij[0][2])) + t32 * (-t23 * t29 * t6 + t19 * (-t1 * Vinv_ij[1][1] + t2 * Vinv_ij[0][1]));
t2 = 0.2e1;
gradE[0] = -t2 * (-t24 * (t23 * t22 * t21 + t19 * (t25 * Vinv_ij[1][0] - t27 * Vinv_ij[2][0])) + t33 * Vinv_ij[0][0] + t30 * Vinv_ij[0][1] + t17 * Vinv_ij[0][2] - t32 * (t23 * t22 * t29 + t19 * (t25 * Vinv_ij[1][1] - t27 * Vinv_ij[2][1])) - t31 * (t23 * t22 * t15 + t19 * (t25 * Vinv_ij[1][2] - t27 * Vinv_ij[2][2])));
gradE[1] = -t2 * t35;
gradE[2] = -t2 * t34;
gradE[3] = t2 * t36;
gradE[4] = t2 * t9;
gradE[5] = t2 * t4;
gradE[6] = t2 * t5;
gradE[7] = t2 * t3;
gradE[8] = t2 * t1;

``

``

``

``

``

Hessian

 

``

hessE := Hessian(E, [v1n[1], v1n[2], v1n[3], v2n[1], v2n[2], v2n[3], v3n[1], v3n[2], v3n[3]])

Dimension(hessE)

9, 9

(1.5.1)

 

CodeGeneration[C](hessE, optimize = tryhard, deducetypes = false, resultname = 'hessE')

Error, (in Print) improper op or subscript selector

 

``

````

``

``

``

``


 

Download membrane_energy.mw

 

 

 

Dear Experts,

Please how do I carry out the differentiation of 

y[1](t)*y[2](t)*(y[1](t)+y[2](t))^3

with respect to y[1] using maple? I know how to use maple if the derivative is with respect to t.
Thank you in anticipation

Dear all

I would like to solve a linear system A X=b whee A is a matrix n times n

If A is a tri-diagonal matrix, how can we write simple code to make A upper-triangular and then we solve the system using backward substitution

many thanks

 

Recently found out about Steiner ellipsoids. This is an ellipsoid inscribed in a tetrahedron, and an ellipsoid described near a tetrahedron. One ellipsoid touches the faces of the tetrahedron in centroids, the other ellipsoid touches the planes in vertices of the tetrahedron, and these planes are parallel to the faces.
steiner_in_ellipsoid.mw
steiner_out_ellipsoid.mw

There is a desire to find out if 4 vertices determine the tetrahedron or not. And it seems Maple answer this question:

restart: with(geom3d):
point(A, 0, 0, 0), point(B, 1, 0, 0), point(C, 0, 0, 1), point(F, 0, 1, 0):
gtetrahedron(T1, [A, B, C, F]):
i := nops(op(0, detail(T1))); 
if i = 1 then print("Ok gtetrahedron") else print("No gtetrahedron") end if:

 I want to stop further execution of the program if the tetrahedron is not determine, for example, when point
B = [0,0,0], but I don’t know how to do it.

 

I have a nested list like this,

Spectrums:=[ [graph1,eigenvalue of the graph1] , [graph2,eigenvalue of the graph2], ... ,[graphN,eigenvalue of the graphN] ]

What is the easiest / efficient way to group the list with respect to second value (eigenvalue)?

rfin := proc(m::integer) 
local c, i, flg := 0;
for i from 0 to m do
	local b := i;
	do 
		c := b mod 3;
		if (c <> 2) then next else flg := 1; 
		end if;
		b := 1/3*b - 1/3*c;
	until b = 0;
	if evalb(flg = 0) then print(i); 
	end if; 
end do;
end proc;

Hello everyone. I've written a procedure that outputs all numbers <= a given user I/P whose ternary representation has no 2.

However, I get an "Error, unterminated loop" message. Can someone please out the mistake(s)?

I am trying to simplify an expression, and leave W in terms of other variables. But unfortunately I can't delete the RootOf, and I can't see the expressions. Could you please help me.

 

 

Dear all

I have an optimization problem. I would like to add a condition to obtain only a positive integer as the solution to the problem 

 

 

Positive_integer.mw

 

thanks

The .mw files have already been associated with Maple 2020, but when clicking on any of them, Maple 2020 won't lunch as expected and nothing actually will happen.
I have tried to reinstall Maple 2020, but the problem just keep existing.

The Windows version where the bug occurs is Windows 10 version 1909.

 

Hello everyone I need your help  please, I found a problem with solving an equation to explain this in detail ,here is  the problem how it is posed :

first of all we have N(q)=(exp(q)/sqrt(q))*sqrt(3/2)*D(3*q/2) .     (1)

with: D(3*q/2)=exp(-3*q/2)*integral(t^2)*dt with t varie from 0 to sqrt(3*q/2) this integral is known as Dawson's name     (2)

then we have q=(24/(n-3))*(x*k*m)/t with : t=0.6,n=6,k=1.3, so q=18.66666667*x*m    (3)

finaly we have m = 1/2*[(exp(q)/(q*N(q)))-1-1/q]     (4)

the quetion : is we must  find the expression of m  (4)  as a function of x only .

thank you evryone .

Hi everyone,

In the RandomTools package, the Generate(integer(range = A..B)) function generates a random integer in the range A..B. All integers in that range have the same probability to be generated, that is, 1/nops([seq(A..B)]). However, I would like to specify the probabilities of each integer. How to do so?

Example: range = 1..5. Instead of P(X=j)=1/5 with j =1,2,3,4,5, let's say the probabilities should be as follows:

P(X=1) = 0.2, P(X=2) = 0.5, P(X=3) = P(X=4) = P(X=5) = 0.1

How to generate a random integer between 1 and 5 with these probabilities?

Thank you in advance.

Error, numeric exception: division by zeroprpblem_maple_2.mw
 

restart;

Normalizer := simplify

simplify

(1)

asa := (1/1176215040)*(11762150400*Pi^(3/2)*c[2]*c[3]*sqrt(2)*x^(3/2)*cos(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))-11762150400*Pi^(3/2)*c[2]*c[3]*sqrt(2)*x^(3/2)*sin(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))-289348899840*Pi^(3/2)*c[5]*c[2]*sqrt(2)*x^(3/2)*cos(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))+289348899840*Pi^(3/2)*c[5]*c[2]*sqrt(2)*x^(3/2)*sin(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))-1176215040*Pi^(3/2)*c[0]*c[1]*sqrt(2)*x^(3/2)*cos(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))+1176215040*Pi^(3/2)*c[0]*c[1]*sqrt(2)*x^(3/2)*sin(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))-11762150400*Pi^(3/2)*c[3]*c[4]*sqrt(2)*x^(3/2)*cos(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))+11762150400*Pi^(3/2)*c[3]*c[4]*sqrt(2)*x^(3/2)*sin(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))+289348899840*Pi^(3/2)*c[5]*c[4]*sqrt(2)*x^(3/2)*cos(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))-289348899840*Pi^(3/2)*c[5]*c[4]*sqrt(2)*x^(3/2)*sin(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))+5881075200*Pi^(3/2)*c[0]*c[3]*sqrt(2)*x^(3/2)*cos(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))-5881075200*Pi^(3/2)*c[0]*c[3]*sqrt(2)*x^(3/2)*sin(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))-144674449920*Pi^(3/2)*c[5]*c[0]*sqrt(2)*x^(3/2)*cos(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))+144674449920*Pi^(3/2)*c[5]*c[0]*sqrt(2)*x^(3/2)*sin(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))-2352430080*Pi^(3/2)*c[1]*c[2]*sqrt(2)*x^(3/2)*cos(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))+2352430080*Pi^(3/2)*c[1]*c[2]*sqrt(2)*x^(3/2)*sin(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))+1176215040*Pi^(3/2)*c[1]*c[2]*sqrt(2)*sqrt(x)*sin(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))-1176215040*Pi^(3/2)*c[1]*c[4]*sqrt(2)*sqrt(x)*cos(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))-1176215040*Pi^(3/2)*c[1]*c[4]*sqrt(2)*sqrt(x)*sin(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))-5881075200*Pi^(3/2)*c[2]*c[3]*sqrt(2)*sqrt(x)*cos(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))-5881075200*Pi^(3/2)*c[2]*c[3]*sqrt(2)*sqrt(x)*sin(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))+144674449920*Pi^(3/2)*c[5]*c[2]*sqrt(2)*sqrt(x)*cos(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))+588107520*Pi^(3/2)*c[0]*c[1]*sqrt(2)*sqrt(x)*cos(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))+588107520*Pi^(3/2)*c[0]*c[1]*sqrt(2)*sqrt(x)*sin(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))+716931072*c[5]*c[3]*x^12*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+716931072*x^11*c[3]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1158676480*x^13*c[4]*c[5]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*x^13*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*x^11*c[4]*c[5]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-22224863232*x^11*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+716931072*c[5]*c[2]*x^11*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+716931072*c[2]*c[4]*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[2]*c[4]*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-1838182301696*c[5]*c[4]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+32944912678912*x^7*c[4]*c[5]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+592633147392*x^7*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+428356051643520*x^5*c[4]*c[5]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[4]*c[0]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*x^6*c[0]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-926941184*c[5]*c[2]*x^11*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+28590342144*c[5]*c[2]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-6273146880*c[5]*c[2]*x^9*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-8065474560*c[5]*c[2]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-450739634176*c[5]*c[2]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+276018462720*c[5]*c[2]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+8342470656*c[2]*c[3]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+16395272192*c[2]*c[4]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-1254629376*c[2]*c[4]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+191330979840*c[2]*c[4]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-579338240*c[4]*c[0]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-225760870400*c[5]*c[1]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+8800821839169360*c[5]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-8800821839169360*c[5]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-29999084544*c[2]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+32149877760*c[2]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3763888128*c[2]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+69004615680*x^2*c[4]^2*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+55517349888*c[4]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-5045766485760*c[4]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+358465536*c[2]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-2352430080*Pi*c[1]*c[2]*x+2352430080*Pi*c[1]*c[4]*x+11762150400*Pi*c[2]*c[3]*x-289348899840*Pi*c[5]*c[2]*x-1176215040*Pi*c[0]*c[1]*x-11762150400*Pi*c[3]*c[4]*x+289348899840*Pi*c[5]*c[4]*x+27601846272*x^3*c[1]*c[4]*Pi+27601846272*x^3*c[3]*c[4]*Pi-82805538816*x^3*c[4]*c[5]*Pi+1254629376*x^3*c[0]*c[1]*Pi+1254629376*x^3*c[0]*c[3]*Pi-3763888128*x^3*c[0]*c[5]*Pi+31365734400*x^2*c[0]*c[4]*Pi+3136573440*x^2*c[0]*c[2]*Pi+69004615680*x^2*c[2]*c[4]*Pi+869007360*x^6*c[0]*c[4]*Pi+17647534080*x^7*c[4]*c[5]*Pi+802160640*x^7*c[0]*c[5]*Pi+23658725376*x^4*c[2]*c[4]*Pi+1075396608*x^4*c[0]*c[2]*Pi+955908096*x^5*c[0]*c[3]*Pi-955908096*x^5*c[0]*c[5]*Pi+21029978112*x^5*c[3]*c[4]*Pi-21029978112*x^5*c[4]*c[5]*Pi-6810845184*c[4]^2*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-405536768*c[3]^2*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-13830328512000*c[5]^2*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-8754008440320*c[5]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+19885785088*c[4]^2*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+5881075200*Pi^(3/2)*c[3]*c[4]*sqrt(2)*sqrt(x)*cos(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))+5881075200*Pi^(3/2)*c[3]*c[4]*sqrt(2)*sqrt(x)*sin(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))-144674449920*Pi^(3/2)*c[5]*c[4]*sqrt(2)*sqrt(x)*cos(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))-144674449920*Pi^(3/2)*c[5]*c[4]*sqrt(2)*sqrt(x)*sin(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))-2940537600*Pi^(3/2)*c[0]*c[3]*sqrt(2)*sqrt(x)*cos(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))-2940537600*Pi^(3/2)*c[0]*c[3]*sqrt(2)*sqrt(x)*sin(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))+72337224960*Pi^(3/2)*c[5]*c[0]*sqrt(2)*sqrt(x)*cos(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))+72337224960*Pi^(3/2)*c[5]*c[0]*sqrt(2)*sqrt(x)*sin(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))+1176215040*Pi^(3/2)*c[1]*c[2]*sqrt(2)*sqrt(x)*cos(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))+2352430080*Pi^(3/2)*c[1]*c[4]*sqrt(2)*x^(3/2)*cos(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))-2352430080*Pi^(3/2)*c[1]*c[4]*sqrt(2)*x^(3/2)*sin(x)*FresnelC(sqrt(2)*sqrt(x)/sqrt(Pi))+228969861120*c[5]*c[1]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+356001085440*c[5]*c[3]*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[1]*c[3]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[1]*c[3]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+127344881664*c[5]*c[3]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-10565155560960*c[5]*c[3]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+26041253888*c[3]*c[4]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-411923972096*c[3]*c[4]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-60715100160*c[3]*c[4]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-5531739333120*c[3]*c[4]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[1]*c[4]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[1]*c[4]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1781465088*c[2]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-289669120*c[2]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+1337160464640*c[3]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-87979326507072*c[4]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+5881075200*Pi*c[0]*c[3]*x-144674449920*Pi*c[5]*c[0]*x-3136573440*c[5]^2*x^12*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-15862099968*c[5]^2*x^12*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*c[2]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+87989363542080*c[4]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1185624760320*c[2]*c[3]*x^3*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6631612416*c[3]*c[4]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+263472168960*c[3]*c[4]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+473981054976*c[5]*c[4]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-17407590520320*c[5]*c[4]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[1]*c[2]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[1]*c[2]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3943120896*c[2]*c[3]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+120758077440*c[2]*c[3]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-55696582656*c[5]*c[2]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6137098007040*c[5]*c[2]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3291740135424*c[5]*c[2]*x^5*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+5231009152512*c[5]*c[2]*x^5*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+70978108481280*c[5]*c[2]*x^3*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-71286747307776*c[5]*c[2]*x^3*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+5185077248*c[1]*c[3]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-89392343040*c[1]*c[3]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-463470592*c[1]*c[2]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+58455228416*c[5]*c[4]*x^11*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-695205888*c[1]*c[4]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+11355029504*c[1]*c[4]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+358465536*c[1]*c[4]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+152123811840*c[1]*c[4]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-579338240*c[1]*c[3]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-695205888*c[2]*c[3]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[2]*c[3]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[2]*c[3]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-926941184*c[3]*c[4]*x^11*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-6273146880*c[3]*c[4]*x^9*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-463470592*c[0]*c[3]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[0]*c[3]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[0]*c[3]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+15062794240*c[5]*c[0]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-3226189824*c[5]*c[0]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+183489546240*c[5]*c[0]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-695205888*c[5]*c[0]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[5]*c[0]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[5]*c[0]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+450098288640*c[5]*c[4]*x^9*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-811073536*c[2]*c[4]*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-1042808832*c[5]*c[3]*x^12*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+41277849600*c[5]*c[3]*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-946921111552*c[5]*c[3]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-811073536*c[5]*c[1]*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[5]*c[1]*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+21261713408*c[5]*c[1]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-6273146880*c[5]*c[1]*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-5556215808*c[5]*c[1]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+174863969280*c[4]^2*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+5341870616576*c[4]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+2630800972800*c[4]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-95590809600*x^5*c[0]*c[5]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-156246165504*x^5*c[0]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-2220693995520*x^3*c[0]*c[5]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+2070138470400*x^3*c[0]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-70824099840*x^5*c[1]*c[4]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-137426724864*x^5*c[1]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1558876999680*x^3*c[1]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1533784412160*x^3*c[1]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+3074618646528*x^5*c[3]*c[4]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+4660600868352*x^5*c[3]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+66544561923840*x^3*c[3]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-66584710063872*x^3*c[3]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-263853041307648*x^5*c[4]*c[5]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-355765111498368*x^5*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-5713675981453440*x^3*c[4]*c[5]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+5714067425818752*x^3*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-165799362560*c[2]*c[4]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-123536185344*c[2]*c[4]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-2820171594240*x^4*c[2]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-54747463680*c[2]*c[3]*x^5*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-104268662784*c[2]*c[3]*x^5*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1173078466560*c[2]*c[3]*x^3*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+144674449920*Pi^(3/2)*c[5]*c[2]*sqrt(2)*sqrt(x)*sin(x)*FresnelS(sqrt(2)*sqrt(x)/sqrt(Pi))-454255493120*c[4]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-637272064*c[5]^2*x^14*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+358465536*c[5]^2*x^14*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*x^10*c[4]^2*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+358465536*c[4]^2*x^12*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+358465536*x^4*c[0]^2*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1568286720*x^2*c[0]^2*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-173801472*c[1]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+3136573440*c[1]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+40495742976*c[5]^2*x^12*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-1679392931840*c[5]^2*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+279155036160*c[5]^2*x^10*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+538280810496*c[5]^2*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+43491569811456*c[5]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-539983223749632*c[5]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+464578475961600*c[5]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-219223333023552*c[5]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-521404416*c[4]^2*x^12*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+358465536*c[3]^2*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*c[3]^2*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+7676231680*c[3]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-268849152*c[3]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-80075407360*c[3]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+92528916480*c[3]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-56928807936*c[3]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1337160464640*c[3]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+358465536*c[1]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*c[1]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3820738521600*c[5]*c[1]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+11038361411584*c[5]*c[3]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-181886855230080*c[5]*c[3]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+2784325040640*x^4*c[2]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-69004615680*x^2*c[2]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-347602944*x^6*c[0]*c[2]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+6990077952*x^4*c[0]*c[2]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+7270694912*x^6*c[0]*c[4]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-120220379136*c[4]*c[0]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*x^2*c[0]*c[2]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-31365734400*x^2*c[0]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*x^6*c[0]*c[2]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*x^4*c[0]*c[2]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1792327680*x^6*c[0]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+114484930560*c[4]*c[0]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1998716928*c[1]*c[2]*x^5*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+7348543488*c[1]*c[2]*x^5*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+40775454720*c[1]*c[2]*x^3*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-43284713472*c[1]*c[2]*x^3*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+4660051968*c[1]*c[3]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+89392343040*c[1]*c[3]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-132856289280*c[5]*c[1]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3820738521600*c[5]*c[1]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+5614197608448*c[5]*c[3]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+181886855230080*c[5]*c[3]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-173801472*x^5*c[0]*c[1]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*x^5*c[0]*c[1]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*x^3*c[0]*c[1]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3763888128*x^3*c[0]*c[1]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[5]*c[3]*x^10*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-14338621440*c[5]*c[3]*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+2520121344*x^5*c[0]*c[3]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+5197750272*x^5*c[0]*c[3]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+59594895360*x^3*c[0]*c[3]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-54576377856*x^3*c[0]*c[3]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+1244672*x^2*Pi-882161280*x^(5/2)*c[3]*Pi^(3/2)-882161280*x^(5/2)*c[1]*Pi^(3/2)-735134400*x^(7/2)*c[2]*Pi^(3/2)-530675145*x^(13/2)*c[5]*Pi^(3/2)-578918340*x^(11/2)*c[4]*Pi^(3/2)+2352430080*c[4]*x^(3/2)*Pi^(3/2)-2352430080*c[2]*x^(3/2)*Pi^(3/2)-1176215040*c[0]*x^(3/2)*Pi^(3/2)+1996488704*x^8*c[4]*sqrt(Pi)+2867724288*x^4*c[0]*sqrt(Pi)+2139095040*x^7*c[3]*sqrt(Pi)+5735448576*x^4*c[2]*sqrt(Pi)-2139095040*x^7*c[5]*sqrt(Pi)+2549088256*x^5*c[1]*sqrt(Pi)+2549088256*x^5*c[3]*sqrt(Pi)-7647264768*x^5*c[5]*sqrt(Pi)+1879048192*x^9*c[5]*sqrt(Pi)+2317352960*x^6*c[2]*sqrt(Pi)+643242600*x^(9/2)*c[5]*Pi^(3/2)-643242600*x^(9/2)*c[3]*Pi^(3/2)+2646483840*x^(5/2)*c[5]*Pi^(3/2)+1568286720*x^2*c[0]^2*Pi-5735448576*x^4*c[4]*sqrt(Pi)+19118161920*x^6*c[4]^2*Pi-69004615680*x^2*c[4]^2*Pi)/(Pi^(3/2)*sqrt(x))

(1/1176215040)*(716931072*c[5]*c[3]*x^12*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+716931072*x^11*c[3]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1158676480*x^13*c[4]*c[5]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*x^13*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*x^11*c[4]*c[5]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-22224863232*x^11*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+716931072*c[5]*c[2]*x^11*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+716931072*c[2]*c[4]*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[2]*c[4]*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-1838182301696*c[5]*c[4]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+32944912678912*x^7*c[4]*c[5]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+592633147392*x^7*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+428356051643520*x^5*c[4]*c[5]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[4]*c[0]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*x^6*c[0]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-926941184*c[5]*c[2]*x^11*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+28590342144*c[5]*c[2]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-6273146880*c[5]*c[2]*x^9*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-8065474560*c[5]*c[2]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-450739634176*c[5]*c[2]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+276018462720*c[5]*c[2]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+8342470656*c[2]*c[3]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+16395272192*c[2]*c[4]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-1254629376*c[2]*c[4]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+191330979840*c[2]*c[4]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-579338240*c[4]*c[0]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-225760870400*c[5]*c[1]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+8800821839169360*c[5]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-8800821839169360*c[5]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-29999084544*c[2]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+32149877760*c[2]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3763888128*c[2]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+69004615680*x^2*c[4]^2*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+55517349888*c[4]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-5045766485760*c[4]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+358465536*c[2]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-2352430080*Pi*c[1]*c[2]*x+2352430080*Pi*c[1]*c[4]*x+11762150400*Pi*c[2]*c[3]*x-289348899840*Pi*c[5]*c[2]*x-1176215040*Pi*c[0]*c[1]*x-11762150400*Pi*c[3]*c[4]*x+289348899840*Pi*c[5]*c[4]*x+27601846272*x^3*c[1]*c[4]*Pi+27601846272*x^3*c[3]*c[4]*Pi-82805538816*x^3*c[4]*c[5]*Pi+1254629376*x^3*c[0]*c[1]*Pi+1254629376*x^3*c[0]*c[3]*Pi-3763888128*x^3*c[0]*c[5]*Pi+31365734400*x^2*c[0]*c[4]*Pi+3136573440*x^2*c[0]*c[2]*Pi+69004615680*x^2*c[2]*c[4]*Pi+869007360*x^6*c[0]*c[4]*Pi+17647534080*x^7*c[4]*c[5]*Pi+802160640*x^7*c[0]*c[5]*Pi+23658725376*x^4*c[2]*c[4]*Pi+1075396608*x^4*c[0]*c[2]*Pi+955908096*x^5*c[0]*c[3]*Pi-955908096*x^5*c[0]*c[5]*Pi+21029978112*x^5*c[3]*c[4]*Pi-21029978112*x^5*c[4]*c[5]*Pi-11762150400*Pi^(3/2)*c[3]*c[4]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+11762150400*Pi^(3/2)*c[3]*c[4]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+289348899840*Pi^(3/2)*c[5]*c[4]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-289348899840*Pi^(3/2)*c[5]*c[4]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+5881075200*Pi^(3/2)*c[0]*c[3]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-5881075200*Pi^(3/2)*c[0]*c[3]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-144674449920*Pi^(3/2)*c[5]*c[0]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+144674449920*Pi^(3/2)*c[5]*c[0]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-2352430080*Pi^(3/2)*c[1]*c[2]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+2352430080*Pi^(3/2)*c[1]*c[2]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+1176215040*Pi^(3/2)*c[1]*c[2]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-1176215040*Pi^(3/2)*c[1]*c[4]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-1176215040*Pi^(3/2)*c[1]*c[4]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-5881075200*Pi^(3/2)*c[2]*c[3]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-5881075200*Pi^(3/2)*c[2]*c[3]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+144674449920*Pi^(3/2)*c[5]*c[2]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+588107520*Pi^(3/2)*c[0]*c[1]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+588107520*Pi^(3/2)*c[0]*c[1]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+5881075200*Pi^(3/2)*c[3]*c[4]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+5881075200*Pi^(3/2)*c[3]*c[4]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-144674449920*Pi^(3/2)*c[5]*c[4]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-144674449920*Pi^(3/2)*c[5]*c[4]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-2940537600*Pi^(3/2)*c[0]*c[3]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-2940537600*Pi^(3/2)*c[0]*c[3]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+72337224960*Pi^(3/2)*c[5]*c[0]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+72337224960*Pi^(3/2)*c[5]*c[0]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+1176215040*Pi^(3/2)*c[1]*c[2]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+2352430080*Pi^(3/2)*c[1]*c[4]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-2352430080*Pi^(3/2)*c[1]*c[4]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+144674449920*Pi^(3/2)*c[5]*c[2]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+11762150400*Pi^(3/2)*c[2]*c[3]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-11762150400*Pi^(3/2)*c[2]*c[3]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-289348899840*Pi^(3/2)*c[5]*c[2]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+289348899840*Pi^(3/2)*c[5]*c[2]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-1176215040*Pi^(3/2)*c[0]*c[1]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+1176215040*Pi^(3/2)*c[0]*c[1]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-6810845184*c[4]^2*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-405536768*c[3]^2*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-13830328512000*c[5]^2*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-8754008440320*c[5]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+19885785088*c[4]^2*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+1996488704*x^8*c[4]*Pi^(1/2)+2867724288*x^4*c[0]*Pi^(1/2)+2139095040*x^7*c[3]*Pi^(1/2)+5735448576*x^4*c[2]*Pi^(1/2)-2139095040*x^7*c[5]*Pi^(1/2)+2549088256*x^5*c[1]*Pi^(1/2)+228969861120*c[5]*c[1]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+356001085440*c[5]*c[3]*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[1]*c[3]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[1]*c[3]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+127344881664*c[5]*c[3]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-10565155560960*c[5]*c[3]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+26041253888*c[3]*c[4]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-411923972096*c[3]*c[4]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-60715100160*c[3]*c[4]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-5531739333120*c[3]*c[4]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[1]*c[4]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[1]*c[4]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+2549088256*x^5*c[3]*Pi^(1/2)-7647264768*x^5*c[5]*Pi^(1/2)+1879048192*x^9*c[5]*Pi^(1/2)+2317352960*x^6*c[2]*Pi^(1/2)-5735448576*x^4*c[4]*Pi^(1/2)+1781465088*c[2]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-289669120*c[2]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+1337160464640*c[3]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-87979326507072*c[4]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+5881075200*Pi*c[0]*c[3]*x-144674449920*Pi*c[5]*c[0]*x-3136573440*c[5]^2*x^12*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-15862099968*c[5]^2*x^12*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*c[2]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+87989363542080*c[4]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1185624760320*c[2]*c[3]*x^3*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6631612416*c[3]*c[4]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+263472168960*c[3]*c[4]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+473981054976*c[5]*c[4]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-17407590520320*c[5]*c[4]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[1]*c[2]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[1]*c[2]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3943120896*c[2]*c[3]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+120758077440*c[2]*c[3]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-55696582656*c[5]*c[2]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6137098007040*c[5]*c[2]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3291740135424*c[5]*c[2]*x^5*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+5231009152512*c[5]*c[2]*x^5*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+70978108481280*c[5]*c[2]*x^3*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-71286747307776*c[5]*c[2]*x^3*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+5185077248*c[1]*c[3]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-89392343040*c[1]*c[3]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-463470592*c[1]*c[2]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+58455228416*c[5]*c[4]*x^11*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-695205888*c[1]*c[4]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+11355029504*c[1]*c[4]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+358465536*c[1]*c[4]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+152123811840*c[1]*c[4]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-579338240*c[1]*c[3]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-695205888*c[2]*c[3]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[2]*c[3]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[2]*c[3]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-926941184*c[3]*c[4]*x^11*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-6273146880*c[3]*c[4]*x^9*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-463470592*c[0]*c[3]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[0]*c[3]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[0]*c[3]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+15062794240*c[5]*c[0]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-3226189824*c[5]*c[0]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+183489546240*c[5]*c[0]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-695205888*c[5]*c[0]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[5]*c[0]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[5]*c[0]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+450098288640*c[5]*c[4]*x^9*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-811073536*c[2]*c[4]*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-1042808832*c[5]*c[3]*x^12*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+41277849600*c[5]*c[3]*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-946921111552*c[5]*c[3]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-811073536*c[5]*c[1]*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[5]*c[1]*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+21261713408*c[5]*c[1]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-6273146880*c[5]*c[1]*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-5556215808*c[5]*c[1]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+174863969280*c[4]^2*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+5341870616576*c[4]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+2630800972800*c[4]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-95590809600*x^5*c[0]*c[5]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-156246165504*x^5*c[0]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-2220693995520*x^3*c[0]*c[5]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+2070138470400*x^3*c[0]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-70824099840*x^5*c[1]*c[4]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-137426724864*x^5*c[1]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1558876999680*x^3*c[1]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1533784412160*x^3*c[1]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+3074618646528*x^5*c[3]*c[4]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+4660600868352*x^5*c[3]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+66544561923840*x^3*c[3]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-66584710063872*x^3*c[3]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-263853041307648*x^5*c[4]*c[5]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-355765111498368*x^5*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-5713675981453440*x^3*c[4]*c[5]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+5714067425818752*x^3*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-165799362560*c[2]*c[4]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-123536185344*c[2]*c[4]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-2820171594240*x^4*c[2]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-54747463680*c[2]*c[3]*x^5*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-104268662784*c[2]*c[3]*x^5*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1173078466560*c[2]*c[3]*x^3*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-454255493120*c[4]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-637272064*c[5]^2*x^14*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+358465536*c[5]^2*x^14*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*x^10*c[4]^2*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+358465536*c[4]^2*x^12*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+358465536*x^4*c[0]^2*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1568286720*x^2*c[0]^2*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-173801472*c[1]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+3136573440*c[1]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+40495742976*c[5]^2*x^12*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-1679392931840*c[5]^2*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+279155036160*c[5]^2*x^10*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+538280810496*c[5]^2*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+43491569811456*c[5]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-539983223749632*c[5]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+464578475961600*c[5]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-219223333023552*c[5]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-521404416*c[4]^2*x^12*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+358465536*c[3]^2*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*c[3]^2*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+7676231680*c[3]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-268849152*c[3]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-80075407360*c[3]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+92528916480*c[3]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-56928807936*c[3]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1337160464640*c[3]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+358465536*c[1]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*c[1]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3820738521600*c[5]*c[1]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+11038361411584*c[5]*c[3]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-181886855230080*c[5]*c[3]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+2784325040640*x^4*c[2]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-69004615680*x^2*c[2]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-347602944*x^6*c[0]*c[2]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+6990077952*x^4*c[0]*c[2]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+7270694912*x^6*c[0]*c[4]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-120220379136*c[4]*c[0]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*x^2*c[0]*c[2]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-31365734400*x^2*c[0]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*x^6*c[0]*c[2]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*x^4*c[0]*c[2]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1792327680*x^6*c[0]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+114484930560*c[4]*c[0]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1998716928*c[1]*c[2]*x^5*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+7348543488*c[1]*c[2]*x^5*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+40775454720*c[1]*c[2]*x^3*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-43284713472*c[1]*c[2]*x^3*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+4660051968*c[1]*c[3]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+89392343040*c[1]*c[3]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-132856289280*c[5]*c[1]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3820738521600*c[5]*c[1]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+5614197608448*c[5]*c[3]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+181886855230080*c[5]*c[3]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-173801472*x^5*c[0]*c[1]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*x^5*c[0]*c[1]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*x^3*c[0]*c[1]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3763888128*x^3*c[0]*c[1]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[5]*c[3]*x^10*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-14338621440*c[5]*c[3]*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+2520121344*x^5*c[0]*c[3]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+5197750272*x^5*c[0]*c[3]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+59594895360*x^3*c[0]*c[3]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-54576377856*x^3*c[0]*c[3]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+1244672*x^2*Pi-882161280*x^(5/2)*c[3]*Pi^(3/2)-882161280*x^(5/2)*c[1]*Pi^(3/2)-735134400*x^(7/2)*c[2]*Pi^(3/2)-530675145*x^(13/2)*c[5]*Pi^(3/2)-578918340*x^(11/2)*c[4]*Pi^(3/2)+2352430080*c[4]*x^(3/2)*Pi^(3/2)-2352430080*c[2]*x^(3/2)*Pi^(3/2)-1176215040*c[0]*x^(3/2)*Pi^(3/2)+643242600*x^(9/2)*c[5]*Pi^(3/2)-643242600*x^(9/2)*c[3]*Pi^(3/2)+2646483840*x^(5/2)*c[5]*Pi^(3/2)+1568286720*x^2*c[0]^2*Pi+19118161920*x^6*c[4]^2*Pi-69004615680*x^2*c[4]^2*Pi)/(Pi^(3/2)*x^(1/2))

(2)

simplify(asa)

(1/1176215040)*(19118161920*x^6*c[4]^2*Pi-69004615680*x^2*c[4]^2*Pi+1568286720*x^2*c[0]^2*Pi-5735448576*x^4*c[4]*Pi^(1/2)+1996488704*x^8*c[4]*Pi^(1/2)+2867724288*x^4*c[0]*Pi^(1/2)+2139095040*x^7*c[3]*Pi^(1/2)+5735448576*x^4*c[2]*Pi^(1/2)-2139095040*x^7*c[5]*Pi^(1/2)+2549088256*x^5*c[1]*Pi^(1/2)+2549088256*x^5*c[3]*Pi^(1/2)-7647264768*x^5*c[5]*Pi^(1/2)+1879048192*x^9*c[5]*Pi^(1/2)+2317352960*x^6*c[2]*Pi^(1/2)+643242600*x^(9/2)*c[5]*Pi^(3/2)-643242600*x^(9/2)*c[3]*Pi^(3/2)+2646483840*x^(5/2)*c[5]*Pi^(3/2)-882161280*x^(5/2)*c[3]*Pi^(3/2)-882161280*x^(5/2)*c[1]*Pi^(3/2)-735134400*x^(7/2)*c[2]*Pi^(3/2)-530675145*x^(13/2)*c[5]*Pi^(3/2)-578918340*x^(11/2)*c[4]*Pi^(3/2)+2352430080*c[4]*x^(3/2)*Pi^(3/2)-2352430080*c[2]*x^(3/2)*Pi^(3/2)-1176215040*c[0]*x^(3/2)*Pi^(3/2)+1244672*x^2*Pi+716931072*c[5]*c[3]*x^12*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+716931072*x^11*c[3]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1158676480*x^13*c[4]*c[5]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*x^13*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*x^11*c[4]*c[5]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-22224863232*x^11*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+716931072*c[5]*c[2]*x^11*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-2352430080*Pi*c[1]*c[2]*x+2352430080*Pi*c[1]*c[4]*x+11762150400*Pi*c[2]*c[3]*x-289348899840*Pi*c[5]*c[2]*x-1176215040*Pi*c[0]*c[1]*x-11762150400*Pi*c[3]*c[4]*x+289348899840*Pi*c[5]*c[4]*x+27601846272*x^3*c[1]*c[4]*Pi+27601846272*x^3*c[3]*c[4]*Pi-82805538816*x^3*c[4]*c[5]*Pi+1254629376*x^3*c[0]*c[1]*Pi+1254629376*x^3*c[0]*c[3]*Pi-3763888128*x^3*c[0]*c[5]*Pi+31365734400*x^2*c[0]*c[4]*Pi+3136573440*x^2*c[0]*c[2]*Pi+69004615680*x^2*c[2]*c[4]*Pi+869007360*x^6*c[0]*c[4]*Pi+17647534080*x^7*c[4]*c[5]*Pi+802160640*x^7*c[0]*c[5]*Pi+23658725376*x^4*c[2]*c[4]*Pi+1075396608*x^4*c[0]*c[2]*Pi+955908096*x^5*c[0]*c[3]*Pi-955908096*x^5*c[0]*c[5]*Pi+21029978112*x^5*c[3]*c[4]*Pi-21029978112*x^5*c[4]*c[5]*Pi+5881075200*Pi*c[0]*c[3]*x-144674449920*Pi*c[5]*c[0]*x-3136573440*c[5]^2*x^12*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-15862099968*c[5]^2*x^12*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+716931072*c[2]*c[4]*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[2]*c[4]*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-1838182301696*c[5]*c[4]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+32944912678912*c[5]*c[4]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+592633147392*c[5]*c[4]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+428356051643520*c[5]*c[4]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[4]*c[0]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[4]*c[0]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-926941184*c[5]*c[2]*x^11*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+28590342144*c[5]*c[2]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-6273146880*c[5]*c[2]*x^9*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-8065474560*c[5]*c[2]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-450739634176*c[5]*c[2]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+276018462720*c[5]*c[2]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+8342470656*c[2]*c[3]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+16395272192*c[2]*c[4]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-1254629376*c[2]*c[4]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+191330979840*c[2]*c[4]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-579338240*c[4]*c[0]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-225760870400*c[5]*c[1]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+3820738521600*c[5]*c[1]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+11038361411584*c[5]*c[3]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-181886855230080*c[5]*c[3]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+2784325040640*x^4*c[2]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-69004615680*x^2*c[2]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-347602944*x^6*c[0]*c[2]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+6990077952*x^4*c[0]*c[2]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+7270694912*c[4]*c[0]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-120220379136*c[4]*c[0]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*x^2*c[0]*c[2]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-31365734400*x^2*c[0]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*x^6*c[0]*c[2]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*x^4*c[0]*c[2]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1792327680*c[4]*c[0]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+114484930560*c[4]*c[0]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1998716928*c[1]*c[2]*x^5*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+7348543488*c[1]*c[2]*x^5*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+40775454720*c[1]*c[2]*x^3*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-43284713472*c[1]*c[2]*x^3*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+4660051968*c[1]*c[3]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+89392343040*c[1]*c[3]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-132856289280*c[5]*c[1]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3820738521600*c[5]*c[1]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+5614197608448*c[5]*c[3]*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+181886855230080*c[5]*c[3]*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-173801472*x^5*c[0]*c[1]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*x^5*c[0]*c[1]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*x^3*c[0]*c[1]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3763888128*x^3*c[0]*c[1]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[5]*c[3]*x^10*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-14338621440*c[5]*c[3]*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+2520121344*x^5*c[0]*c[3]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+5197750272*x^5*c[0]*c[3]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+59594895360*x^3*c[0]*c[3]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-54576377856*x^3*c[0]*c[3]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-95590809600*x^5*c[0]*c[5]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-156246165504*x^5*c[0]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-2220693995520*x^3*c[0]*c[5]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+2070138470400*x^3*c[0]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-70824099840*x^5*c[1]*c[4]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-137426724864*x^5*c[1]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1558876999680*x^3*c[1]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1533784412160*x^3*c[1]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+3074618646528*x^5*c[3]*c[4]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+4660600868352*x^5*c[3]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+66544561923840*x^3*c[3]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-66584710063872*x^3*c[3]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-263853041307648*x^5*c[4]*c[5]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-355765111498368*x^5*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-5713675981453440*x^3*c[4]*c[5]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+5714067425818752*x^3*c[4]*c[5]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-165799362560*x^6*c[2]*c[4]*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-123536185344*x^6*c[2]*c[4]*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-2820171594240*x^4*c[2]*c[4]*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-54747463680*c[2]*c[3]*x^5*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-104268662784*c[2]*c[3]*x^5*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1173078466560*c[2]*c[3]*x^3*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+1185624760320*c[2]*c[3]*x^3*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6631612416*c[3]*c[4]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+263472168960*c[3]*c[4]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+473981054976*c[5]*c[4]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-17407590520320*c[5]*c[4]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[1]*c[2]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[1]*c[2]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3943120896*c[2]*c[3]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+120758077440*c[2]*c[3]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-55696582656*c[5]*c[2]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6137098007040*c[5]*c[2]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+3291740135424*c[5]*c[2]*x^5*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+5231009152512*c[5]*c[2]*x^5*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+70978108481280*c[5]*c[2]*x^3*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-71286747307776*c[5]*c[2]*x^3*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+5185077248*c[1]*c[3]*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-89392343040*c[1]*c[3]*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-463470592*c[1]*c[2]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+58455228416*c[5]*c[4]*x^11*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-695205888*c[1]*c[4]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+11355029504*c[1]*c[4]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+358465536*c[1]*c[4]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+152123811840*c[1]*c[4]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-579338240*c[1]*c[3]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-695205888*c[2]*c[3]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[2]*c[3]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[2]*c[3]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-926941184*c[3]*c[4]*x^11*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-6273146880*c[3]*c[4]*x^9*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-463470592*c[0]*c[3]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[0]*c[3]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[0]*c[3]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+15062794240*c[5]*c[0]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-3226189824*c[5]*c[0]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+183489546240*c[5]*c[0]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-695205888*c[5]*c[0]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[5]*c[0]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[5]*c[0]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+450098288640*c[5]*c[4]*x^9*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-811073536*c[2]*c[4]*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-1042808832*c[5]*c[3]*x^12*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+41277849600*c[5]*c[3]*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-946921111552*c[5]*c[3]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-811073536*c[5]*c[1]*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+716931072*c[5]*c[1]*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+21261713408*c[5]*c[1]*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-6273146880*c[5]*c[1]*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-5556215808*c[5]*c[1]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+228969861120*c[5]*c[1]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+356001085440*c[5]*c[3]*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[1]*c[3]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[1]*c[3]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+127344881664*c[5]*c[3]*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-10565155560960*c[5]*c[3]*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+26041253888*c[3]*c[4]*x^9*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-411923972096*c[3]*c[4]*x^7*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-60715100160*c[3]*c[4]*x^7*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-5531739333120*c[3]*c[4]*x^5*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+716931072*c[1]*c[4]*x^9*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-6273146880*c[1]*c[4]*x^7*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-637272064*c[5]^2*x^14*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+358465536*c[5]^2*x^14*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*x^10*c[4]^2*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+358465536*c[4]^2*x^12*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+5881075200*Pi^(3/2)*c[3]*c[4]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+5881075200*Pi^(3/2)*c[3]*c[4]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-144674449920*Pi^(3/2)*c[5]*c[4]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-144674449920*Pi^(3/2)*c[5]*c[4]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-2940537600*Pi^(3/2)*c[0]*c[3]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-2940537600*Pi^(3/2)*c[0]*c[3]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+72337224960*Pi^(3/2)*c[5]*c[0]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+72337224960*Pi^(3/2)*c[5]*c[0]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+1176215040*Pi^(3/2)*c[1]*c[2]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+2352430080*Pi^(3/2)*c[1]*c[4]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-2352430080*Pi^(3/2)*c[1]*c[4]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+11762150400*Pi^(3/2)*c[2]*c[3]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-11762150400*Pi^(3/2)*c[2]*c[3]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-289348899840*Pi^(3/2)*c[5]*c[2]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+289348899840*Pi^(3/2)*c[5]*c[2]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-1176215040*Pi^(3/2)*c[0]*c[1]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+1176215040*Pi^(3/2)*c[0]*c[1]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-11762150400*Pi^(3/2)*c[3]*c[4]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+11762150400*Pi^(3/2)*c[3]*c[4]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+289348899840*Pi^(3/2)*c[5]*c[4]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-289348899840*Pi^(3/2)*c[5]*c[4]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+5881075200*Pi^(3/2)*c[0]*c[3]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-5881075200*Pi^(3/2)*c[0]*c[3]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-144674449920*Pi^(3/2)*c[5]*c[0]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+144674449920*Pi^(3/2)*c[5]*c[0]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-2352430080*Pi^(3/2)*c[1]*c[2]*2^(1/2)*x^(3/2)*cos(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+2352430080*Pi^(3/2)*c[1]*c[2]*2^(1/2)*x^(3/2)*sin(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+1176215040*Pi^(3/2)*c[1]*c[2]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-1176215040*Pi^(3/2)*c[1]*c[4]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-1176215040*Pi^(3/2)*c[1]*c[4]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-5881075200*Pi^(3/2)*c[2]*c[3]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))-5881075200*Pi^(3/2)*c[2]*c[3]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+144674449920*Pi^(3/2)*c[5]*c[2]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+144674449920*Pi^(3/2)*c[5]*c[2]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))+588107520*Pi^(3/2)*c[0]*c[1]*2^(1/2)*x^(1/2)*cos(x)*FresnelC(2^(1/2)*x^(1/2)/Pi^(1/2))+588107520*Pi^(3/2)*c[0]*c[1]*2^(1/2)*x^(1/2)*sin(x)*FresnelS(2^(1/2)*x^(1/2)/Pi^(1/2))-405536768*c[3]^2*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+358465536*x^4*c[0]^2*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1568286720*x^2*c[0]^2*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-173801472*c[1]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+3136573440*c[1]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+40495742976*c[5]^2*x^12*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-1679392931840*c[5]^2*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+279155036160*c[5]^2*x^10*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+538280810496*c[5]^2*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+43491569811456*c[5]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-13830328512000*c[5]^2*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-8754008440320*c[5]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-539983223749632*c[5]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+464578475961600*c[5]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-219223333023552*c[5]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-521404416*c[4]^2*x^12*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+358465536*c[3]^2*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*c[3]^2*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+7676231680*c[3]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-268849152*c[3]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-80075407360*c[3]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+92528916480*c[3]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-56928807936*c[3]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-1337160464640*c[3]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+358465536*c[1]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*c[1]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+69004615680*x^2*c[4]^2*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+55517349888*c[4]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-5045766485760*c[4]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+358465536*c[2]^2*x^8*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-3136573440*c[2]^2*x^6*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+19885785088*c[4]^2*x^10*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)-6810845184*c[4]^2*x^10*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-454255493120*c[4]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+174863969280*c[4]^2*x^8*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+5341870616576*c[4]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+2630800972800*c[4]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+87989363542080*c[4]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-87979326507072*c[4]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+1337160464640*c[3]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-289669120*c[2]^2*x^8*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+1781465088*c[2]^2*x^6*Pi*hypergeom([3], [13/4, 15/4], -(1/4)*x^2)+3763888128*c[2]^2*x^6*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)+32149877760*c[2]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)-29999084544*c[2]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2)-8800821839169360*c[5]^2*x^4*Pi*hypergeom([1], [5/4, 7/4], -(1/4)*x^2)+8800821839169360*c[5]^2*x^4*Pi*hypergeom([2], [9/4, 11/4], -(1/4)*x^2))/(Pi^(3/2)*x^(1/2))

(3)

subs(x = 0, asa)

Error, numeric exception: division by zero

 

``

``


 

Download prpblem_maple_2.mw

 

Hello experts,

I am trying to use solve to find a solution to a system of two equations. The two equations involved are quite complicated, and so sometimes Maple has difficulty with this. In particular, the solve command tries evaluating but never comes up with a solution (I've waited at least an hour, before giving up). 

I recently learned about fsolve, which gives approximate numeric solutions (which would be fine for my purposes), but fsolve too struggles with a solution and simply returns my input to me. I tried plotting the system of equations using plots:-implictplot to see if a solution existed, and as expected it does. I was hoping to get some tips on trying to solve a difficult system like this, perhaps given the knowledge that a solution definitely exists. Unfortunately, I need a solution for many variations of the same system, so simply reading off the approximate solution isn't really an option.

In my attatched code, the system with W = 49 is the first one where Maple really begins to struggle, and I believe that solutions for W>49 are also difficult.

06042020_Predicting_w_AB_Ratio_Maple_Primes.mw

Thanks!

Hello

I need to count and separate the nonlinear terms in a list.  Example:

w:=[[z, y, x, 1], [x*z, x*y, y, 1], [x*z, z, x*y]];

there are 4 nonlinear terms, x*z, x*y, x*z, and x*y.  

The terms can be any combination of the given variables, that is, x, y, and z.  

My solution to the problem of counting the nonlinear terms is 

aux1:=[seq([seq(nops(w[j,i]),i=1..nops(w[j]))],j=1..nops(w))];

aux2:=[seq(selectremove(x->x>1,aux1[i])[1],i=1..nops(aux1))]

res:=convert([seq(convert(nops(aux2[i]),`+`),i=1..nops(aux2))],`+`);

It works but I wonder whether there is a better solution that includes showing the nonlinear terms themselves.

Many thanks

Ed

1 2 3 4 5 6 7 Last Page 1 of 1857