MaplePrimes Questions

Search Questions:

How do I access the Maple Fundamentals guide video? Every time I click on the video, it tells me I must log in to view the video. But there is no where on that page to log in. When I log in to Maple Primes, I can't find the video.

I think the worksheet below is enough to define the problem I'm facing.

(question updated by adding a simple 2D case ; the expected value is about 0.67684)

restart

# How can I define CharFunc so that int(CharFunc, x=...) gives me the expected value?
#
# Motivation:
# Let Dom some 2D domain and Env another 2D domain which contains Dom.
# The interior of Dom is defined by a sequence L(x, y) of inequalities.
# The area of Dom can be expressed by the integral over Env of the characteristic function
# CharFunc(x, y) of Dom which returns 1 if (x, y) belongs to Dom and 0 otherwise.
#
# Here is a simple 1D example


CharFunc := proc(x)
  if x::numeric then
    piecewise(is(And(x >= 0, x <= 1)), 1, 0)
  else
    'procname( _passed )'
  end if:
end proc:


Env := -1..2:
plot(CharFunc(x), x=Env, thickness=5);

 

# Expected value = 1

int(CharFunc(x), x=Env);

int(CharFunc(x), x = -1 .. 2)

(1)

# Expected value = 1/2

int(CharFunc(x), x=1/4..3/4);

int(CharFunc(x), x = 1/4 .. 3/4)

(2)


Works with floats

# Expected value = 0.5

int(CharFunc(x), x=0.25..0.75);

.5000000000

(3)

# Expected value = 1

int(CharFunc(x), x=-1.0..2.0);

1.000000000

(4)


2D example

Env := x=0.8..3, y=0..1.3;

x = .8 .. 3, y = 0 .. 1.3

(5)

Dom := proc (x, y) options operator, arrow; And(y <= 1/(1+sinh(2*x)*ln(x)^2), .8 <= x, x <= 3, 0 <= y, y <= 1.1) end proc

proc (x, y) options operator, arrow; And(y <= 1/(1+sinh(2*x)*ln(x)^2), .8 <= x, x <= 3, 0 <= y, y <= 1.1) end proc

(6)

CharFunc := proc(x, y)
  piecewise(is(Dom(x, y)), 1, 0)
end proc:

plot3d(
  [0, 'CharFunc'(x, y)], Env
  , grid=[40, 40]
  , style=surface, color=[gray, blue], transparency=[0, 0]
  , title=typeset('CharFunc'(x, y))
);

 

int(CharFunc(x, y), Env)

0.

(7)
 

 

Download Integration_issue.mw

Thanks in advance

Does Maple provide any command/examples that can help verfying whether an analytic function or a time series (a sequence of numbers) is periodic?

I had a look at signal processing. In principle auto-correlation could be used for that purpose but I am interested in a command that outputs a period for a given allowable error or a graphical display that can help in an assessment.

Analytic convolution and analysis of the convolution terms for periodic conditions would be great for analytic functions.

I have no time (and limited skills) to program such things myself.

Hello everyone, first time poster here.

I am trying to calculate xDLVO theory for a surface, which is simply 3 equations with 3 unknown. I have values for everything except x, y and z and Maple gives intermediate results for all the equations when defining them. The cos(x) is of a contact angle, and the problem is that Maple will not calculate x, y and z when all three cos(x) have decimal numbers. when changing just one of them to a whole number, such as changing cos(66.969) to cos(67), then it solve the unknowns. This is the same for the other two numbers, there just always have to be a atleast one whole number in one of the cos(x). I have tried to just use the results of the cos(x), so I enter decimal numbers instead of the entire (1+cos(x) bracket, and it still will not work with decimal numbers.

I am not the brightest at math or Maple, so maybe it is a dumb mistake from my part :)

 

eqw := Ytotw*(1 + cos(66.696)) = 2*(sqrt(Ylww*x) + sqrt(y*Ypw) + sqrt(Ymw*z));

           eqw := 17.99142992 = 2*sqrt(26)*sqrt(x) + 10.09950494*sqrt(y) + 10.09950494*sqrt(z)


eqf := Ytotf*(1 + cos(42.497)) = 2*(sqrt(Ylwf*x) + sqrt(y*Ypf) + sqrt(Ymf*z));

           eqf := 62.95291273 = 2*sqrt(39)*sqrt(x) + 3.019933774*sqrt(y) + 12.58570618*sqrt(z)


eqd := Ytotd*(1 + cos(30.405)) = 2*(sqrt(Ylwd*x) + sqrt(y*Ypd) + sqrt(Ymd*z));

          eqd := 77.77865435 = 14.25482374*sqrt(x)


solve([eqw, eqf, eqd], [x, y, z]);
                               []

 

Thank you for your time!

Best regards

Jakob

Hello, I need help to find the real and Imaginary components of following complex model using maple, here q=u+iv,

The maple worksheet shows an incorrect evaluation of the integral in (1) which is a standard integral representation of a Bessel function.  Equations (2)-(5) along with the graph show the incorrectness of the evaluation.  What is going on?

Bessel.mw

This worksheet defines two physics problems and fails in the attempt to solve the first one.

How can these problems be solved?

Rolling_circle.mw

Hello, can somebody give some suggestions to speed up this summations? I am summing up to 10 and it take ages (about 10min).

Digits := 10;
n1 := 122;
x := 54;
n2 := 65;
y := 14;
alpha1 := 1.1;
beta1 := 1.1;
alpha2 := 1.1;
beta2 := 1.1;

Sigma2 := (j, l, psi0) -> Sum(Sum(Sum(psi0^(-y - alpha2 - l - alpha2*h - v)*pochhammer(beta2 - 1, h)*pochhammer(beta1 - 1, u)*pochhammer(y + alpha2 + l + alpha2*h, v)*2^(-y - alpha2 - l - alpha2*h - x - alpha1 - j - alpha1*u - v)*(psi0 - 1)^v/(h!*(y + alpha2 + l + alpha2*h)*u!*v!*(y + alpha2 + l + alpha2*h + x + alpha1 + j + alpha1*u + v)), u = 0 .. upto), h = 0 .. upto), v = 0 .. upto);

F2 := psi0 -> Sum(binomial(n1 - x, j)*Sum(binomial(n2 - y, l)*(-1)^(j + l)*Sigma2(j, l, psi0), l = 0 .. n2 - y), j = 0 .. n1 - x);

upto:=10;

F2(5.620);

Thanks in advance.

Found this old procedure code and revived it
Trying to include an Exploreplot as well
a0,a1,a2,b1,b2 are coeifficents in a ode to construct 
How about odetype when constructing a ode is this correct in code?


 

restart;

Odegenerator := proc(V, x, y, df, const_values)
    local input_args, xi, F, result, a0, a1, a2, b0, b1, sol, Fsol, rows, numrows, eq, count, odeplot_cmd, ode_type, row_number, values;
    uses plots, PDEtools;
       if nargs = 1 and V = "help" then
        printf("Use this procedure as follows:\n");
        printf("Define an ODE template:\n");
        printf("Odegenerator(V, x, y, df, const_values)\n");
        printf("V: A set of values for iteration over constants (if df > 0)\n");
        printf("x: The independent variable\n");
        printf("y: The function\n");
        printf("df: The row number in the DataFrame or 0 for manual input\n");
        printf("const_values: A list of values for the constants (used if df = 0)\n");
        return;
    end if;

    if nargs < 4 or nargs > 5 then
        error "Incorrect number of arguments. Expected: V, x, y, df, [const_values (optional)]";
    end if;

    # Determine the ODE type using odeadvisor for the global eq_template
    ode_type := odeadvisor(eq_template);

    # Display the ODE and its type
    print(eq_template, ode_type);

    rows := [];
    count := 0;
    ###################### BOF manuele invoer ###################
    if df = 0 then
    # If df = 0, use const_values for substitution
    if nargs < 5 or not type(const_values, list) then
        error "When df = 0, a list of constant values must be provided as the fifth argument.";
    end if;

    # Assign constant values
    if nops(const_values) <> 5 then
        error "The list of constant values must contain exactly 5 elements.";
    end if;

    # Find the corresponding row number by unique identification
    count := 1;
    for a0 in V do
        for a1 in V do
            for a2 in V do
                for b0 in V do
                    for b1 in V do
                        if [a0, a1, a2, b0, b1] = const_values then
                            row_number := sprintf("%d", count);  # Convert to string
                        end if;
                        count := count + 1;
                    end do;
                end do;
            end do;
        end do;
    end do;

    if not assigned(row_number) then
        row_number := "Unique (outside iterative rows)";  # Mark as unique
    end if;

    # Substitute the given values
    eq := subs({'a__0' = const_values[1], 'a__1' = const_values[2], 'a__2' = const_values[3], 'b__0' = const_values[4], 'b__1' = const_values[5]}, eq_template);

    # Solve the equation
    sol := dsolve(eq, y(x));
    if type(sol, `=`) then
        Fsol := rhs(sol);
    else
        Fsol := "No explicit solution";
    end if;

    # Display the solution and its row number
    odeplot_cmd := DEtools[DEplot](eq, y(x), x = 0 .. 2, y = -10 .. 10, [[y(0) = 1]]);
    print(plots:-display(odeplot_cmd, size = [550, 550]));

    printf("The found function is:\n");
    print(Fsol);
    printf("The corresponding row number is: %s\n", row_number);

    # -- Start of Additional Functionality --
    # Optionally display the simplified ODE
    printf("The simplified ODE using the given coefficients is:\n");
    print(eq, ode_type);
    # -- End of Additional Functionality --

    return Fsol;
     ################# EOF manuele berekening ##################
     ############## BOF iterative berekening##############
    else
        # Iterative approach for DataFrame generation
        for a0 in V do
            for a1 in V do
                for a2 in V do
                    for b0 in V do
                        for b1 in V do
                            xi := x;
                            F := y;

                            # Substitute constant values into the ODE
                            eq := subs({'a__0' = a0, 'a__1' = a1, 'a__2' = a2, 'b__0' = b0, 'b__1' = b1}, eq_template);

                            sol := dsolve(eq, F(xi));
                            if type(sol, `=`) then
                                Fsol := rhs(sol);
                            else
                                Fsol := "No explicit solution";
                            end if;

                            rows := [op(rows), [a0, a1, a2, b0, b1, Fsol]];
                        end do;
                    end do;
                end do;
            end do;
        end do;

        numrows := nops(rows);
        result := DataFrame(Matrix(numrows, 6, rows), columns = ['a__0', 'a__1', 'a__2', 'b__0', 'b__1', y(x)]);

        interface(rtablesize = numrows + 10);

        if df > 0 and df <= numrows then
            a0 := result[df, 'a__0'];
            a1 := result[df, 'a__1'];
            a2 := result[df, 'a__2'];
            b0 := result[df, 'b__0'];
            b1 := result[df, 'b__1'];

            eq := subs({'a__0' = a0, 'a__1' = a1, 'a__2' = a2, 'b__0' = b0, 'b__1' = b1}, eq_template);

            # Display the additional parameters
            print(eq, ode_type, [df], [a0, a1, a2, b0, b1]);

            # Retrieve the solution
            Fsol := result[df, y(x)];

            # Display the solution in DEplot
            odeplot_cmd := DEtools[DEplot](eq, y(x), x = 0 .. 2, y = -10 .. 10, [[y(0) = 1]]);
            print(plots:-display(odeplot_cmd, size = [550, 550]));

            printf("The found function for row number %d is:\n", df);
            print(Fsol);

        else
            printf("The specified row (%d) is out of bounds for the DataFrame.\n", df);
        end if;

        return result;
     ########## EOF iteratief bwrekening ########################
    end if;

end proc:


# Test cases
V := {0, 1};
eq_template := diff(y(t), t) = 'a__0'*sin(t) + 'a__1'*y(t) + 'a__2'*y(t)^2 + 'b__0'*exp(-t);



 

{0, 1}

 

diff(y(t), t) = a__0*sin(t)+a__1*y(t)+a__2*y(t)^2+b__0*exp(-t)

(1)

 

 

# Iterative test
result := Odegenerator(V, t, y, 25);

diff(y(t), t) = a__0*sin(t)+a__1*y(t)+a__2*y(t)^2+b__0*exp(-t), odeadvisor(diff(y(t), t) = a__0*sin(t)+a__1*y(t)+a__2*y(t)^2+b__0*exp(-t))

 

diff(y(t), t) = sin(t)+y(t), odeadvisor(diff(y(t), t) = a__0*sin(t)+a__1*y(t)+a__2*y(t)^2+b__0*exp(-t)), [25], [1, 1, 0, 0, 0]

 

 

The found function for row number 25 is:

 

-(1/2)*cos(t)-(1/2)*sin(t)+c__1*exp(t)

 

module DataFrame () description "two-dimensional rich data container"; local columns, rows, data, binder; option object(BaseDataObject); end module

(2)

 

# Manual input test
Odegenerator(V, t, y, 0, [1, 1, 0, 0, 0]); #0 after y is rownumber = 0 and [1, 1, 0, 0, 0] are coeifficents

diff(y(t), t) = a__0*sin(t)+a__1*y(t)+a__2*y(t)^2+b__0*exp(-t), odeadvisor(diff(y(t), t) = a__0*sin(t)+a__1*y(t)+a__2*y(t)^2+b__0*exp(-t))

 

 

The found function is:

 

-(1/2)*cos(t)-(1/2)*sin(t)+c__1*exp(t)

 

The corresponding row number is: 25
The simplified ODE using the given coefficients is:

 

diff(y(t), t) = sin(t)+y(t), odeadvisor(diff(y(t), t) = a__0*sin(t)+a__1*y(t)+a__2*y(t)^2+b__0*exp(-t))

 

-(1/2)*cos(t)-(1/2)*sin(t)+c__1*exp(t)

(3)
 

 

 


Download ODEGENERATORFUNCTIE_opgepakt-uitgebreid_naar_MprimesDEF_14-1-2025.mw

How do I generate a plot within a plot as shown in my example below? The fundemental issue is plot structures like Histogram() etc are not images and so combining them in the way I imagine is non-trivial. I couldn't find a standard way to do this in the help section.

Plot_within_a_plot.mw

restart

NULL``

with(plots)

NULL

Consider the two plots p1 and p2.

NULL

p1 := plot(sin(x), size = [300, 300])

 

p2 := plot(sin(x), view = [0 .. Pi, .5 .. 1], size = [300, 300], axes = boxed)

 

NULL

How do I generate a plot within a plot as shown below, if I calculated the plots ahead of time? Is there a standard way to do this?

NULL

NULL

NULL

Download Plot_within_a_plot.mw

Is there an easy way to get the midpoint and distance in maple?

Thanks in advance.

Distance and Midpoint

 

 

Table 1: Key Skills

NULLdmf1 := [-3, 1]

[-3, 1]

(1)

dmf2 := [3, 2]

[3, 2]

(2)

dmf3 := [-2, -3]

[-2, -3]

(3)

dmf4 := [3, -2]

[3, -2]

(4)

dmf := [dmf1, dmf2, dmf3, dmf4]

[[-3, 1], [3, 2], [-2, -3], [3, -2]]

(5)

plot(dmf)

 

NULL

dme1a1 := [1, 3]

[1, 3]``

(6)

dme1a2 := [5, 6]

[5, 6]

(7)

dme1a3 := [5, 3]

[5, 3]

(8)

dme1 := [dme1a1, dme1a2, dme1a3]

[[1, 3], [5, 6], [5, 3]]

(9)

plot(dme1)

 

NULL

``

NULL

NULL

NULL

NULL

NULL

NULL

NULL

Download 2.1-Distance_and_Midpoint.mw

Hello everyone, I am facing problem to solve a system of partial differential equations of f, g & q in three variables x,y,t. I have attached the maple file and also a page that i am exploring, in attcahed page I need to find results given in (7) and (8). Maple file is also attached below, please help me to solve this system of PDEs for required results given in (7) and (8). Thanks
 


 

Download PDEs_system_solution.mw

restart

with(PDEtools):

alias(u = u(x, y, t), f = f(x, y, t), g = g(x, y, t), q = q(x, y, t))

u, f, g, q

(1)

eq1 := 24*g*(diff(q, y))*(diff(q, x))^3-12*(diff(q, y))*(diff(q, x))^2*g^2 = 0

24*g*(diff(q, y))*(diff(q, x))^3-12*(diff(q, y))*(diff(q, x))^2*g^2 = 0

(2)

eq2 := 60*g*sigma*(diff(q, y))*(diff(q, x))^3-30*sigma*(diff(q, y))*(diff(q, x))^2*g^2+18*(diff(g, x))*(diff(q, y))*(diff(q, x))^2-15*(diff(q, y))*(diff(q, x))*(diff(g, x))*g+18*g*(diff(q, y))*(diff(q, x))*(diff(q, x, x))-3*(diff(q, y))*g^2*(diff(q, x, x))+6*(diff(g, y))*(diff(q, x))^3+18*g*(diff(q, x))^2*(diff(q, y, x))-9*(diff(g, y))*g*(diff(q, x))^2-3*g^2*(diff(q, x))*(diff(q, y, x)) = 0

60*g*sigma*(diff(q, y))*(diff(q, x))^3-30*sigma*(diff(q, y))*(diff(q, x))^2*g^2+18*(diff(g, x))*(diff(q, y))*(diff(q, x))^2-15*(diff(q, y))*(diff(q, x))*(diff(g, x))*g+18*g*(diff(q, y))*(diff(q, x))*(diff(diff(q, x), x))-3*(diff(q, y))*g^2*(diff(diff(q, x), x))+6*(diff(g, y))*(diff(q, x))^3+18*g*(diff(q, x))^2*(diff(diff(q, x), y))-9*(diff(g, y))*g*(diff(q, x))^2-3*g^2*(diff(q, x))*(diff(diff(q, x), y)) = 0

(3)

eq3 := 36*g*sigma*(diff(q, y))*(diff(q, x))*(diff(q, x, x))-27*sigma*(diff(q, y))*(diff(q, x))*(diff(g, x))*g-3*(diff(q, y))*(diff(g, x))^2+6*(diff(g, y, x))*(diff(q, x))^2-9*(diff(g, y))*(diff(g, x))*(diff(q, x))+2*g*(diff(q, y))*(diff(q, t))+2*g*(diff(q, y))*(diff(q, x, x, x))-6*(diff(f, y))*(diff(q, x))^2*g+12*(diff(g, y))*sigma*(diff(q, x))^3+6*(diff(g, x))*(diff(q, y))*(diff(q, x, x))-3*(diff(q, y, x))*(diff(g, x))*g-3*(diff(q, y))*(diff(g, x, x))*g+6*(diff(q, y))*(diff(g, x, x))*(diff(q, x))-3*(diff(q, x, x))*(diff(g, y))*g-3*g*(diff(q, x))*(diff(g, y, x))+12*(diff(q, x))*(diff(g, x))*(diff(q, y, x))+6*g*(diff(q, y, x))*(diff(q, x, x))+6*(diff(q, x))*g*(diff(q, y, x, x))+6*(diff(g, y))*(diff(q, x))*(diff(q, x, x))-6*sigma*(diff(q, x))*(diff(q, y, x))*g^2+50*g*sigma^2*(diff(q, y))*(diff(q, x))^3-24*sigma^2*(diff(q, y))*(diff(q, x))^2*g^2+36*(diff(g, x))*sigma*(diff(q, y))*(diff(q, x))^2-15*(diff(q, x))^2*sigma*(diff(g, y))*g-6*(diff(f, x))*(diff(q, y))*(diff(q, x))*g-6*sigma*(diff(q, y))*(diff(q, x, x))*g^2+36*g*sigma*(diff(q, x))^2*(diff(q, y, x)) = 0

50*g*sigma^2*(diff(q, y))*(diff(q, x))^3-24*sigma^2*(diff(q, y))*(diff(q, x))^2*g^2+36*(diff(g, x))*sigma*(diff(q, y))*(diff(q, x))^2-15*(diff(q, x))^2*sigma*(diff(g, y))*g-6*(diff(f, x))*(diff(q, y))*(diff(q, x))*g-6*sigma*(diff(q, x))*(diff(diff(q, x), y))*g^2-6*sigma*(diff(q, y))*(diff(diff(q, x), x))*g^2+36*g*sigma*(diff(q, x))^2*(diff(diff(q, x), y))-3*(diff(q, y))*(diff(g, x))^2+6*(diff(diff(g, x), y))*(diff(q, x))^2+6*(diff(g, y))*(diff(q, x))*(diff(diff(q, x), x))+6*(diff(g, x))*(diff(q, y))*(diff(diff(q, x), x))-3*(diff(diff(q, x), y))*(diff(g, x))*g-3*(diff(q, y))*(diff(diff(g, x), x))*g+6*(diff(q, y))*(diff(diff(g, x), x))*(diff(q, x))-3*(diff(diff(q, x), x))*(diff(g, y))*g-3*g*(diff(q, x))*(diff(diff(g, x), y))+12*(diff(q, x))*(diff(g, x))*(diff(diff(q, x), y))+6*g*(diff(diff(q, x), y))*(diff(diff(q, x), x))+6*(diff(q, x))*g*(diff(diff(diff(q, x), x), y))+2*g*(diff(q, y))*(diff(diff(diff(q, x), x), x))+2*g*(diff(q, y))*(diff(q, t))+12*(diff(g, y))*sigma*(diff(q, x))^3-9*(diff(g, y))*(diff(g, x))*(diff(q, x))-6*(diff(f, y))*(diff(q, x))^2*g-27*sigma*(diff(q, y))*(diff(q, x))*(diff(g, x))*g+36*g*sigma*(diff(q, y))*(diff(q, x))*(diff(diff(q, x), x)) = 0

(4)

eq4 := -3*g*(diff(f, y))*(diff(q, x, x))-3*(diff(q, y))*g*(diff(f, x, x))-3*g*(diff(q, x))*(diff(f, y, x))-3*g*(diff(q, y, x))*(diff(f, x))+15*g*sigma^3*(diff(q, y))*(diff(q, x))^3-6*sigma^3*(diff(q, y))*(diff(q, x))^2*g^2+21*(diff(g, x))*sigma^2*(diff(q, y))*(diff(q, x))^2-6*(diff(q, x))^2*sigma^2*(diff(g, y))*g-9*(diff(f, y))*(diff(q, x))^2*sigma*g+3*g*sigma*(diff(q, y))*(diff(q, t))-9*sigma*(diff(q, x))*(diff(g, x))*(diff(g, y))+9*(diff(g, y, x))*sigma*(diff(q, x))^2+7*(diff(g, y))*sigma^2*(diff(q, x))^3-3*sigma*(diff(q, y))*(diff(g, x))^2-6*(diff(g, x))*(diff(q, x))*(diff(f, y))-3*(diff(q, y))*(diff(g, x))*(diff(f, x))-3*(diff(g, y))*(diff(q, x))*(diff(f, x))-3*(diff(g, y, x))*(diff(g, x))-3*(diff(g, x, x))*(diff(g, y))+g*(diff(q, y, t))+9*g*sigma*(diff(q, y, x))*(diff(q, x, x))-3*sigma*(diff(q, x, x))*(diff(g, y))*g+9*sigma*(diff(q, x))*g*(diff(q, y, x, x))-3*sigma*(diff(q, y, x))*(diff(g, x))*g-3*sigma*(diff(q, x))*(diff(g, y, x))*g+9*(diff(g, y))*sigma*(diff(q, x))*(diff(q, x, x))+9*(diff(g, x))*sigma*(diff(q, y))*(diff(q, x, x))+3*g*sigma*(diff(q, y))*(diff(q, x, x, x))+18*sigma*(diff(q, x))*(diff(g, x))*(diff(q, y, x))+21*g*sigma^2*(diff(q, x))^2*(diff(q, y, x))-3*sigma^2*(diff(q, x))*(diff(q, y, x))*g^2+9*sigma*(diff(q, y))*(diff(g, x, x))*(diff(q, x))-3*sigma*(diff(q, y))*(diff(g, x, x))*g-3*sigma^2*(diff(q, y))*(diff(q, x, x))*g^2+21*g*sigma^2*(diff(q, y))*(diff(q, x))*(diff(q, x, x))-9*(diff(f, x))*(diff(q, y))*(diff(q, x))*sigma*g-12*sigma^2*(diff(q, y))*(diff(q, x))*(diff(g, x))*g+(diff(q, y))*(diff(g, t))+(diff(g, y))*(diff(q, t))+3*(diff(g, x, x))*(diff(q, y, x))+(diff(q, y))*(diff(g, x, x, x))+3*(diff(q, x))*(diff(g, y, x, x))+(diff(q, y, x, x, x))*g+3*(diff(g, x))*(diff(q, y, x, x))+(diff(g, y))*(diff(q, x, x, x))+3*(diff(g, y, x))*(diff(q, x, x)) = 0

7*(diff(g, y))*sigma^2*(diff(q, x))^3-3*sigma*(diff(q, y))*(diff(g, x))^2-6*(diff(g, x))*(diff(q, x))*(diff(f, y))-3*(diff(q, y))*(diff(g, x))*(diff(f, x))-3*(diff(g, y))*(diff(q, x))*(diff(f, x))-3*(diff(q, y))*g*(diff(diff(f, x), x))-3*g*(diff(q, x))*(diff(diff(f, x), y))-3*g*(diff(f, y))*(diff(diff(q, x), x))-3*g*(diff(diff(q, x), y))*(diff(f, x))+9*(diff(diff(g, x), y))*sigma*(diff(q, x))^2+15*g*sigma^3*(diff(q, y))*(diff(q, x))^3-6*sigma^3*(diff(q, y))*(diff(q, x))^2*g^2+21*(diff(g, x))*sigma^2*(diff(q, y))*(diff(q, x))^2-6*(diff(q, x))^2*sigma^2*(diff(g, y))*g-9*(diff(f, y))*(diff(q, x))^2*sigma*g+3*g*sigma*(diff(q, y))*(diff(q, t))-9*sigma*(diff(q, x))*(diff(g, x))*(diff(g, y))+9*g*sigma*(diff(diff(q, x), y))*(diff(diff(q, x), x))-3*sigma*(diff(diff(q, x), x))*(diff(g, y))*g+9*sigma*(diff(q, x))*g*(diff(diff(diff(q, x), x), y))-3*sigma*(diff(diff(q, x), y))*(diff(g, x))*g-3*sigma*(diff(q, x))*(diff(diff(g, x), y))*g+9*(diff(g, y))*sigma*(diff(q, x))*(diff(diff(q, x), x))+9*(diff(g, x))*sigma*(diff(q, y))*(diff(diff(q, x), x))+3*g*sigma*(diff(q, y))*(diff(diff(diff(q, x), x), x))+18*sigma*(diff(q, x))*(diff(g, x))*(diff(diff(q, x), y))+21*g*sigma^2*(diff(q, x))^2*(diff(diff(q, x), y))-3*sigma^2*(diff(q, x))*(diff(diff(q, x), y))*g^2+9*sigma*(diff(q, y))*(diff(diff(g, x), x))*(diff(q, x))-3*sigma*(diff(q, y))*(diff(diff(g, x), x))*g-3*sigma^2*(diff(q, y))*(diff(diff(q, x), x))*g^2-9*(diff(f, x))*(diff(q, y))*(diff(q, x))*sigma*g-12*sigma^2*(diff(q, y))*(diff(q, x))*(diff(g, x))*g+21*g*sigma^2*(diff(q, y))*(diff(q, x))*(diff(diff(q, x), x))+(diff(q, y))*(diff(g, t))+(diff(g, y))*(diff(q, t))-3*(diff(diff(g, x), y))*(diff(g, x))-3*(diff(diff(g, x), x))*(diff(g, y))+g*(diff(diff(q, t), y))+3*(diff(diff(g, x), x))*(diff(diff(q, x), y))+(diff(q, y))*(diff(diff(diff(g, x), x), x))+3*(diff(q, x))*(diff(diff(diff(g, x), x), y))+(diff(diff(diff(diff(q, x), x), x), y))*g+3*(diff(g, x))*(diff(diff(diff(q, x), x), y))+(diff(g, y))*(diff(diff(diff(q, x), x), x))+3*(diff(diff(g, x), y))*(diff(diff(q, x), x)) = 0

(5)

eq5 := (diff(g, y))*sigma*(diff(q, t))+(diff(g, t))*sigma*(diff(q, y))+(diff(g, y))*sigma^3*(diff(q, x))^3+3*(diff(g, x))*sigma^3*(diff(q, y))*(diff(q, x))^2+g*sigma^2*(diff(q, y))*(diff(q, t))+g*sigma^4*(diff(q, y))*(diff(q, x))^3-3*(diff(f, x))*sigma*(diff(q, y))*(diff(g, x))-3*(diff(f, x))*sigma*(diff(q, x))*(diff(g, y))-6*(diff(f, y))*sigma*(diff(q, x))*(diff(g, x))+3*g*sigma^3*(diff(q, x))^2*(diff(q, y, x))+g*sigma^2*(diff(q, y))*(diff(q, x, x, x))-3*(diff(f, x))*sigma*(diff(q, y, x))*g-3*(diff(f, y))*sigma*(diff(q, x, x))*g-3*g*sigma*(diff(q, y))*(diff(f, x, x))-3*sigma*(diff(q, x))*g*(diff(f, y, x))+3*(diff(g, x, x))*sigma^2*(diff(q, y))*(diff(q, x))+6*(diff(g, x))*sigma^2*(diff(q, x))*(diff(q, y, x))+diff(g, y, t)-3*(diff(f, x))*(diff(q, y))*(diff(q, x))*sigma^2*g+3*g*sigma^3*(diff(q, y))*(diff(q, x))*(diff(q, x, x))+3*g*sigma^2*(diff(q, x))*(diff(q, y, x, x))-3*(diff(f, y))*(diff(q, x))^2*sigma^2*g+3*(diff(g, y))*sigma^2*(diff(q, x))*(diff(q, x, x))+3*g*sigma^2*(diff(q, y, x))*(diff(q, x, x))+3*(diff(g, x))*sigma^2*(diff(q, y))*(diff(q, x, x))-3*(diff(g, y))*(diff(f, x, x))-3*(diff(f, y))*(diff(g, x, x))-3*(diff(g, x))*(diff(f, y, x))-3*(diff(f, x))*(diff(g, y, x))+diff(g, y, x, x, x)+3*(diff(g, y, x))*sigma^2*(diff(q, x))^2+3*(diff(g, x, x))*sigma*(diff(q, y, x))+3*(diff(g, y, x, x))*sigma*(diff(q, x))+(diff(g, x, x, x))*sigma*(diff(q, y))+g*sigma*(diff(q, y, t))+3*(diff(g, x))*sigma*(diff(q, y, x, x))+3*(diff(g, y, x))*sigma*(diff(q, x, x))+g*sigma*(diff(q, y, x, x, x))+(diff(g, y))*sigma*(diff(q, x, x, x)) = 0

(diff(g, t))*sigma*(diff(q, y))+(diff(g, y))*sigma^3*(diff(q, x))^3+(diff(g, y))*sigma*(diff(q, t))+3*(diff(diff(g, x), y))*sigma^2*(diff(q, x))^2+3*(diff(diff(g, x), x))*sigma*(diff(diff(q, x), y))+3*(diff(diff(diff(g, x), x), y))*sigma*(diff(q, x))+(diff(diff(diff(g, x), x), x))*sigma*(diff(q, y))+g*sigma*(diff(diff(q, t), y))+3*(diff(g, x))*sigma*(diff(diff(diff(q, x), x), y))+3*(diff(diff(g, x), y))*sigma*(diff(diff(q, x), x))+g*sigma*(diff(diff(diff(diff(q, x), x), x), y))+(diff(g, y))*sigma*(diff(diff(diff(q, x), x), x))-3*(diff(f, x))*(diff(q, y))*(diff(q, x))*sigma^2*g+3*g*sigma^3*(diff(q, y))*(diff(q, x))*(diff(diff(q, x), x))-3*(diff(f, y))*(diff(q, x))^2*sigma^2*g+6*(diff(g, x))*sigma^2*(diff(q, x))*(diff(diff(q, x), y))+3*g*sigma^2*(diff(q, x))*(diff(diff(diff(q, x), x), y))+3*(diff(g, y))*sigma^2*(diff(q, x))*(diff(diff(q, x), x))+3*g*sigma^2*(diff(diff(q, x), y))*(diff(diff(q, x), x))+3*(diff(g, x))*sigma^2*(diff(q, y))*(diff(diff(q, x), x))+3*g*sigma^3*(diff(q, x))^2*(diff(diff(q, x), y))+g*sigma^2*(diff(q, y))*(diff(diff(diff(q, x), x), x))-3*(diff(f, x))*sigma*(diff(diff(q, x), y))*g-3*(diff(f, y))*sigma*(diff(diff(q, x), x))*g-3*g*sigma*(diff(q, y))*(diff(diff(f, x), x))-3*sigma*(diff(q, x))*g*(diff(diff(f, x), y))+3*(diff(diff(g, x), x))*sigma^2*(diff(q, y))*(diff(q, x))+3*(diff(g, x))*sigma^3*(diff(q, y))*(diff(q, x))^2+g*sigma^2*(diff(q, y))*(diff(q, t))+g*sigma^4*(diff(q, y))*(diff(q, x))^3-3*(diff(f, x))*sigma*(diff(q, y))*(diff(g, x))-3*(diff(f, x))*sigma*(diff(q, x))*(diff(g, y))-6*(diff(f, y))*sigma*(diff(q, x))*(diff(g, x))+diff(diff(g, t), y)+diff(diff(diff(diff(g, x), x), x), y)-3*(diff(g, y))*(diff(diff(f, x), x))-3*(diff(f, y))*(diff(diff(g, x), x))-3*(diff(g, x))*(diff(diff(f, x), y))-3*(diff(f, x))*(diff(diff(g, x), y)) = 0

(6)

eq6 := -3*(diff(f, x))*(diff(f, y, x))-3*(diff(f, y))*(diff(f, x, x))+diff(f, y, x, x, x)+diff(f, y, t) = 0

-3*(diff(f, x))*(diff(diff(f, x), y))-3*(diff(f, y))*(diff(diff(f, x), x))+diff(diff(diff(diff(f, x), x), x), y)+diff(diff(f, t), y) = 0

(7)

pdsolve({eq1, eq2, eq3, eq4, eq5, eq6}, {f, g, q})

``

Download PDEs_system_solution.mw

Can maple simplify a Combined Inequality? At best it outputs imho a more complicated solution.

Thanks in Advance.

sl10 := -1 <= (3-5*x)*(1/2) and (3-5*x)*(1/2) <= 9

0 <= 5/2-(5/2)*x and -(5/2)*x <= 15/2

(1)

The output should be:

 

-3 <= x and x <= 1


Download Combined_Inequality.mw

This is a very serious problem. Maple 2024.2 on windows 10.

I noticed, may be starting 2-3 weeks now, that sometimes when I do File->Open , and the Open dialogue opens, I am not able to use the mouse to select the .mw file I want to open. 

Can not even close the dialogue by clicking X. Even clickiing on cancel does nothing.  Basically the mouse seems not doing anything.

Only way is to type using the keyboard the file name. Eveything else does not work.

Not only that, the mouse is trapped in the dialogue.

I can't even get it out of Maple to go to another application. AT first, I had to do CTRL-ALT-DEL to get out and use the task manager to kill Maple. Then later I found if I type the file name I can get out.

Here is a movie.  

I do not understand what is causing this. This only happens in Maple for me. Neven seen anything like this before.

Any suggestions what to look for?

I just remembered. 2-3 weeks ago, I closed the left panel. As you see above.

I just tried now, and expanded it again, and guess what, the mouse seems to be working now!

Can someone conform this?  Here is a movie with the panel expanded again:

You see, the mouse now works and can select files.

When I minimize the left panel, the mouse sometimes stops working in file dialogue.

Here is another movie showing this problem much more clearly.

When closing the left panel, the open file dialogue stops working (mouse not working), and when expanding it again, it starts to work!

This can not be a feature right? it must be a bug in the Java interface?

Here's a puzzle for geometry lovers. It has a very short manual solution, but it's not that easy to find. Of course, you can solve it in Maple using coordinates. You need to find the radius of these two identical circles.

1 2 3 4 5 6 7 Last Page 1 of 2386