Items tagged with 2dmath

Feed

Hey there. 

I recently had to install maple 2017, because the licensens for 2016 had expired. 

And in the new version, whenever i want to copy a matrix from a result, it gives me an _rtable, and a number. The result is the same, but it makes it harder to read and i am not able to edit values in this copied matrix. 

How do i change this?

hi..

I dont know why ''Y'' in this code does not calculate?

Also in Determinant  should exist term ''Omega''!!!

however this term not apear!!

please help

thanksZrO2.mw
 

restart

 

with(LinearAlgebra):

with(LinearAlgebra):

with(VectorCalculus):

E_c:=200e9:

rho_m:=2702:

rho_c:=5700:h:=1:Digits:=200:


E1 := `-`(4.2705019043175109408418470672541038566261199358253*10^11*V1(0))+`-`(2.3725010579541727449121372595856132536811777421250*10^11*V2(0))+1.5696340652026885245525677229595578452458265608494*10^11*W(1)+`-`(2.0979486841753331066266817163288024688566490248347*10^11*W(3))+5.4007241680476829082789400225291715487122216582787*10^10*W(5)+3.5809247085360964145389659227744194611678663499154*10^11*V1(2)+1.9894026158533868969660921793191219228710368610640*10^11*V2(2)+`-`(1.5013483257366249401397118595815208870951202899385*10^11*V1(4))+`-`(8.3408240318701385563317325532306715949728904996586*10^10*V2(4))+2850.*(omega^2)*V1(0)+`-`(2389.7976509529002380373043584565514766271608718347*(omega^2)*V1(2))+1001.9531250000000000000000000000000000000000000000*(omega^2)*V1(4):

 

E2 := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.3725010579541727449121372595856132536811777421250, 10^11), V1(0))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(4.2705019043175109408418470672541038566261199358252, 10^11), V2(0)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.9894026158533868969660921793191219228710368610640, 10^11), V1(2))), VectorCalculus:-`*`(VectorCalculus:-`*`(3.5809247085360964145389659227744194611678663499153, 10^11), V2(2))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(8.3408240318701385563317325532306715949728904996586, 10^10), V1(4)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.5013483257366249401397118595815208870951202899385, 10^11), V2(4)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.5696340652026885245525677229595578452458265608494, 10^11), W(1))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.0979486841753331066266817163288024688566490248347, 10^11), W(3)))), VectorCalculus:-`*`(VectorCalculus:-`*`(5.4007241680476829082789400225291715487122216582787, 10^10), W(5))), VectorCalculus:-`*`(VectorCalculus:-`*`(2850., omega^2), V2(0))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2389.7976509529002380373043584565514766271608718347, omega^2), V2(2)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1001.9531250000000000000000000000000000000000000000, omega^2), V2(4))):

E3 := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.8980008463633381959297098076684906029449421937001, 10^11), W(0))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.0464227101351256830350451486397052301638843738996, 10^11), V1(1)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.3986324561168887377511211442192016459044326832232, 10^11), V1(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(3.6004827786984552721859600150194476991414811055185, 10^10), V1(5)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.5915220926827095175728737434552975382968294888513, 10^11), W(2))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(6.6726592254961108450653860425845372759783123997272, 10^10), W(4)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.0464227101351256830350451486397052301638843738996, 10^11), V2(1)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.3986324561168887377511211442192016459044326832232, 10^11), V2(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(3.6004827786984552721859600150194476991414811055185, 10^10), V2(5)))), VectorCalculus:-`*`(VectorCalculus:-`*`(2850., omega^2), W(0))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2389.7976509529002380373043584565514766271608718347, omega^2), W(2)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1001.9531250000000000000000000000000000000000000000, omega^2), W(4))):

E4 := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.0464227101351256830350451486397052301638843738997, 10^11), W(0))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.2214716299255315813643079206596798103103761378024, 10^11), V1(1)))), VectorCalculus:-`*`(VectorCalculus:-`*`(3.3768909335128648548928127154266879343498252829884, 10^11), V1(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.9781847824423219358080619338342989761407203990375, 10^11), V1(5)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.7549042347962743784892618717635313196920712292577, 10^11), W(2))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.2808745009976567622404499724256074938728417212344, 10^11), W(4)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(5.9312526448854318622803431489640331342029443553127, 10^10), V2(1)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.0192655329160445762728144798285002567196893656192, 10^11), V2(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(8.7843041320517842057351587174649326412354044181698, 10^10), V2(5)))), VectorCalculus:-`*`(VectorCalculus:-`*`(712.50000000000000000000000000000000000000000000000, omega^2), V1(1))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1224.4069434960135017602438595742022681505344916052, omega^2), V1(3)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1055.2267908337921786307617355195123093332341255338, omega^2), V1(5))):

E5 := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.0464227101351256830350451486397052301638843738997, 10^11), W(0))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.2214716299255315813643079206596798103103761378024, 10^11), V2(1)))), VectorCalculus:-`*`(VectorCalculus:-`*`(3.3768909335128648548928127154266879343498252829884, 10^11), V2(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.9781847824423219358080619338342989761407203990375, 10^11), V2(5)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.7549042347962743784892618717635313196920712292577, 10^11), W(2))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.2808745009976567622404499724256074938728417212344, 10^11), W(4)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(5.9312526448854318622803431489640331342029443553127, 10^10), V1(1)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.0192655329160445762728144798285002567196893656192, 10^11), V1(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(8.7843041320517842057351587174649326412354044181698, 10^10), V1(5)))), VectorCalculus:-`*`(VectorCalculus:-`*`(712.50000000000000000000000000000000000000000000000, omega^2), V2(1))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1224.4069434960135017602438595742022681505344916052, omega^2), V2(3)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1055.2267908337921786307617355195123093332341255338, omega^2), V2(5))):

E6 := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.5696340652026885245525677229595578452458265608495, 10^11), V1(0)), VectorCalculus:-`*`(VectorCalculus:-`*`(1.5696340652026885245525677229595578452458265608495, 10^11), V2(0))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(4.5129617500523730105208889903786611122746970868863, 10^11), W(1)))), VectorCalculus:-`*`(VectorCalculus:-`*`(6.2131578362567818226243648649366563582660969795536, 10^11), W(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.0922794659196454621738794738143334638130489666375, 10^11), W(5)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.9011462543626305766967003610771589296664104983626, 10^11), V1(2)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.9011462543626305766967003610771589296664104983626, 10^11), V2(2)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.8271521540250046106119733650076103042314699809888, 10^11), V1(4))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.8271521540250046106119733650076103042314699809888, 10^11), V2(4))), VectorCalculus:-`*`(VectorCalculus:-`*`(712.50000000000000000000000000000000000000000000000, omega^2), W(1))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1224.4069434960135017602438595742022681505344916052, omega^2), W(3)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1055.2267908337921786307617355195123093332341255338, omega^2), W(5))):

E7 := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.9011462543626305766967003610771589296664104983626, 10^11), W(1))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(4.7119107128007866217743468531741155729216807681740, 10^11), V1(2)))), VectorCalculus:-`*`(VectorCalculus:-`*`(5.0748128190543187340378117893989426968741725224549, 10^11), V1(4))), VectorCalculus:-`*`(VectorCalculus:-`*`(3.0995137005629364198630176713255719374808867211330, 10^11), W(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.3168284715873139556329481351343925356696602976947, 10^11), W(5)))), VectorCalculus:-`*`(VectorCalculus:-`*`(3.5809247085360964145389659227744194611678663499154, 10^11), V1(0))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.9894026158533868969660921793191219228710368610640, 10^11), V2(0))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.8164461224961635078233550893702351473496517088145, 10^11), V2(2)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.0724123476084663741457840654142141615476683079173, 10^11), V2(4))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2389.7976509529002380373043584565514766271608718347, omega^2), V1(0)))), VectorCalculus:-`*`(VectorCalculus:-`*`(2182.0312500000000000000000000000000000000000000000, omega^2), V1(2))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1288.2502962167977845669843807304847803693289074734, omega^2), V1(4)))):

E8 := -1.9011462543626305766967003610771589296664104983626*10^11*W(1)-4.7119107128007866217743468531741155729216807681740*10^11*V2(2)+5.0748128190543187340378117893989426968741725224549*10^11*V2(4)+3.0995137005629364198630176713255719374808867211330*10^11*W(3)-2.3168284715873139556329481351343925356696602976947*10^11*W(5)+1.9894026158533868969660921793191219228710368610640*10^11*V1(0)+3.5809247085360964145389659227744194611678663499153*10^11*V2(0)-1.8164461224961635078233550893702351473496517088145*10^11*V1(2)+1.0724123476084663741457840654142141615476683079173*10^11*V1(4)-2389.7976509529002380373043584565514766271608718347*omega^2*V2(0)+2182.0312500000000000000000000000000000000000000000*omega^2*V2(2)-1288.2502962167977845669843807304847803693289074734*omega^2*V2(4)

E9 := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.7549042347962743784892618717635313196920712292577, 10^11), V1(1)), VectorCalculus:-`*`(VectorCalculus:-`*`(1.7549042347962743784892618717635313196920712292577, 10^11), V2(1))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(6.5012338210738538831817609945731111948027982901282, 10^11), W(2)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.1863576954843550511330528903118121550547428135047, 10^12), W(4))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.9040488725995079969887733136744097432253353062867, 10^11), V1(3)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.9040488725995079969887733136744097432253353062867, 10^11), V2(3)))), VectorCalculus:-`*`(VectorCalculus:-`*`(2.2665101950561447195804856166187258422604042194633, 10^11), V1(5))), VectorCalculus:-`*`(VectorCalculus:-`*`(2.2665101950561447195804856166187258422604042194633, 10^11), V2(5))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.5915220926827095175728737434552975382968294888513, 10^11), W(0))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2389.7976509529002380373043584565514766271608718347, omega^2), W(0)))), VectorCalculus:-`*`(VectorCalculus:-`*`(2182.0312500000000000000000000000000000000000000000, omega^2), W(2))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1288.2502962167977845669843807304847803693289074734, omega^2), W(4)))):

E10 := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.3986324561168887377511211442192016459044326832232, 10^11), W(0)), VectorCalculus:-`*`(VectorCalculus:-`*`(3.3768909335128648548928127154266879343498252829884, 10^11), V1(1))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(6.1222023070711042519748179963162700048903049636371, 10^11), V1(3)))), VectorCalculus:-`*`(VectorCalculus:-`*`(5.9722762993987285423665483888817556162282387212450, 10^11), V1(5))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.9040488725995079969887733136744097432253353062868, 10^11), W(2)))), VectorCalculus:-`*`(VectorCalculus:-`*`(4.4534580327025486258972640897961855979523955862006, 10^11), W(4))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.0192655329160445762728144798285002567196893656192, 10^11), V2(1))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.7886433757232630459689159808594662420330754071490, 10^11), V2(3)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.6315367543759662237835567740527270814718925725463, 10^11), V2(5))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1224.4069434960135017602438595742022681505344916052, omega^2), V1(1)))), VectorCalculus:-`*`(VectorCalculus:-`*`(2148.6328125000000000000000000000000000000000000000, omega^2), V1(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1959.9062914564655436920860212499538090252187294161, omega^2), V1(5)))):

E11 := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.3986324561168887377511211442192016459044326832232, 10^11), W(0)), VectorCalculus:-`*`(VectorCalculus:-`*`(3.3768909335128648548928127154266879343498252829884, 10^11), V2(1))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(6.1222023070711042519748179963162700048903049636371, 10^11), V2(3)))), VectorCalculus:-`*`(VectorCalculus:-`*`(5.9722762993987285423665483888817556162282387212450, 10^11), V2(5))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.9040488725995079969887733136744097432253353062868, 10^11), W(2)))), VectorCalculus:-`*`(VectorCalculus:-`*`(4.4534580327025486258972640897961855979523955862006, 10^11), W(4))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.0192655329160445762728144798285002567196893656192, 10^11), V1(1))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.7886433757232630459689159808594662420330754071490, 10^11), V1(3)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.6315367543759662237835567740527270814718925725463, 10^11), V1(5))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1224.4069434960135017602438595742022681505344916052, omega^2), V2(1)))), VectorCalculus:-`*`(VectorCalculus:-`*`(2148.6328125000000000000000000000000000000000000000, omega^2), V2(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1959.9062914564655436920860212499538090252187294161, omega^2), V2(5)))):

E12 := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.0979486841753331066266817163288024688566490248347, 10^11), V1(0))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.0979486841753331066266817163288024688566490248347, 10^11), V2(0)))), VectorCalculus:-`*`(VectorCalculus:-`*`(6.2131578362567818226243648649366563582660969795536, 10^11), W(1))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.1590169508270918129082825092379880685934152633409, 10^12), W(3)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.1929514898827735667473357103796145708703426375351, 10^12), W(5))), VectorCalculus:-`*`(VectorCalculus:-`*`(3.0995137005629364198630176713255719374808867211330, 10^11), V1(2))), VectorCalculus:-`*`(VectorCalculus:-`*`(3.0995137005629364198630176713255719374808867211330, 10^11), V2(2))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(3.8470197411831163997629889061698911342985204774594, 10^11), V1(4)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(3.8470197411831163997629889061698911342985204774594, 10^11), V2(4)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1224.4069434960135017602438595742022681505344916052, omega^2), W(1)))), VectorCalculus:-`*`(VectorCalculus:-`*`(2148.6328125000000000000000000000000000000000000000, omega^2), W(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1959.9062914564655436920860212499538090252187294161, omega^2), W(5)))):

E13 := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.8271521540250046106119733650076103042314699809887, 10^11), W(1)), VectorCalculus:-`*`(VectorCalculus:-`*`(5.0748128190543187340378117893989426968741725224548, 10^11), V1(2))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(9.4675908045149947710569375270005700088105651033426, 10^11), V1(4)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(3.8470197411831163997629889061698911342985204774594, 10^11), W(3)))), VectorCalculus:-`*`(VectorCalculus:-`*`(4.8700076253112037420543824992554999016189996047000, 10^11), W(5))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.5013483257366249401397118595815208870951202899385, 10^11), V1(0)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(8.3408240318701385563317325532306715949728904996586, 10^10), V2(0)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.0724123476084663741457840654142141615476683079173, 10^11), V2(2))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.2408423807134586334931704209832226544674079633954, 10^11), V2(4)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1001.9531250000000000000000000000000000000000000000, omega^2), V1(0))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1288.2502962167977845669843807304847803693289074734, omega^2), V1(2)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1490.5792236328125000000000000000000000000000000000, omega^2), V1(4))):

E14 := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.8271521540250046106119733650076103042314699809887, 10^11), W(1)), VectorCalculus:-`*`(VectorCalculus:-`*`(5.0748128190543187340378117893989426968741725224548, 10^11), V2(2))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(9.4675908045149947710569375270005700088105651033426, 10^11), V2(4)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(3.8470197411831163997629889061698911342985204774594, 10^11), W(3)))), VectorCalculus:-`*`(VectorCalculus:-`*`(4.8700076253112037420543824992554999016189996047000, 10^11), W(5))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(8.3408240318701385563317325532306715949728904996586, 10^10), V1(0)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.5013483257366249401397118595815208870951202899385, 10^11), V2(0)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.0724123476084663741457840654142141615476683079173, 10^11), V1(2))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.2408423807134586334931704209832226544674079633954, 10^11), V1(4)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1001.9531250000000000000000000000000000000000000000, omega^2), V2(0))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1288.2502962167977845669843807304847803693289074734, omega^2), V2(2)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1490.5792236328125000000000000000000000000000000000, omega^2), V2(4))):

E15 := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.2808745009976567622404499724256074938728417212344, 10^11), V1(1))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.2808745009976567622404499724256074938728417212344, 10^11), V2(1)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.1863576954843550511330528903118121550547428135047, 10^12), W(2))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.6311934721878459214486844029094270431266234063024, 10^12), W(4)))), VectorCalculus:-`*`(VectorCalculus:-`*`(4.4534580327025486258972640897961855979523955862006, 10^11), V1(3))), VectorCalculus:-`*`(VectorCalculus:-`*`(4.4534580327025486258972640897961855979523955862006, 10^11), V2(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(5.0261223082938320761218206092817337666989622620092, 10^11), V1(5)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(5.0261223082938320761218206092817337666989622620092, 10^11), V2(5)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(6.6726592254961108450653860425845372759783123997272, 10^10), W(0)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1001.9531250000000000000000000000000000000000000000, omega^2), W(0))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1288.2502962167977845669843807304847803693289074734, omega^2), W(2)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1490.5792236328125000000000000000000000000000000000, omega^2), W(4))):

E16 := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(3.6004827786984552721859600150194476991414811055197, 10^10), W(0))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.9781847824423219358080619338342989761407203990374, 10^11), V1(1)))), VectorCalculus:-`*`(VectorCalculus:-`*`(5.9722762993987285423665483888817556162282387212450, 10^11), V1(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.0811342250226880053021853608526459273776333972115, 10^12), V1(5)))), VectorCalculus:-`*`(VectorCalculus:-`*`(2.2665101950561447195804856166187258422604042194634, 10^11), W(2))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(5.0261223082938320761218206092817337666989622620092, 10^11), W(4)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(8.7843041320517842057351587174649326412354044181698, 10^10), V2(1)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.6315367543759662237835567740527270814718925725463, 10^11), V2(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.7046921130066534482600041414890585709013821212606, 10^11), V2(5)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1055.2267908337921786307617355195123093332341255338, omega^2), V1(1))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1959.9062914564655436920860212499538090252187294161, omega^2), V1(3)))), VectorCalculus:-`*`(VectorCalculus:-`*`(2047.7851867675781250000000000000000000000000000000, omega^2), V1(5))):

E17 := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(3.6004827786984552721859600150194476991414811055197, 10^10), W(0))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.9781847824423219358080619338342989761407203990374, 10^11), V2(1)))), VectorCalculus:-`*`(VectorCalculus:-`*`(5.9722762993987285423665483888817556162282387212450, 10^11), V2(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.0811342250226880053021853608526459273776333972115, 10^12), V2(5)))), VectorCalculus:-`*`(VectorCalculus:-`*`(2.2665101950561447195804856166187258422604042194634, 10^11), W(2))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(5.0261223082938320761218206092817337666989622620092, 10^11), W(4)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(8.7843041320517842057351587174649326412354044181698, 10^10), V1(1)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.6315367543759662237835567740527270814718925725463, 10^11), V1(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1.7046921130066534482600041414890585709013821212606, 10^11), V1(5)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1055.2267908337921786307617355195123093332341255338, omega^2), V2(1))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1959.9062914564655436920860212499538090252187294161, omega^2), V2(3)))), VectorCalculus:-`*`(VectorCalculus:-`*`(2047.7851867675781250000000000000000000000000000000, omega^2), V2(5))):

E18 := VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`+`(VectorCalculus:-`*`(VectorCalculus:-`*`(5.4007241680476829082789400225291715487122216582806, 10^10), V1(0)), VectorCalculus:-`*`(VectorCalculus:-`*`(5.4007241680476829082789400225291715487122216582806, 10^10), V2(0))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.0922794659196454621738794738143334638130489666373, 10^11), W(1)))), VectorCalculus:-`*`(VectorCalculus:-`*`(1.1929514898827735667473357103796145708703426375351, 10^12), W(3))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.8463891254257486220146464851652785318259567235472, 10^12), W(5)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.3168284715873139556329481351343925356696602976947, 10^11), V1(2)))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(2.3168284715873139556329481351343925356696602976947, 10^11), V2(2)))), VectorCalculus:-`*`(VectorCalculus:-`*`(4.8700076253112037420543824992554999016189996046996, 10^11), V1(4))), VectorCalculus:-`*`(VectorCalculus:-`*`(4.8700076253112037420543824992554999016189996046996, 10^11), V2(4))), VectorCalculus:-`*`(VectorCalculus:-`*`(1055.2267908337921786307617355195123093332341255338, omega^2), W(1))), VectorCalculus:-`-`(VectorCalculus:-`*`(VectorCalculus:-`*`(1959.9062914564655436920860212499538090252187294161, omega^2), W(3)))), VectorCalculus:-`*`(VectorCalculus:-`*`(2047.7851867675781250000000000000000000000000000000, omega^2), W(5))):

q := Matrix([[coeff(E1, V1(0)), coeff(E1, V2(0)), coeff(E1, W(0)), coeff(E1, V1(1)), coeff(E1, V2(1)), coeff(E1, W(1)), coeff(E1, V1(2)), coeff(E1, V2(2)), coeff(E1, W(2)), coeff(E1, V1(3)), coeff(E1, V2(3)), coeff(E1, W(3)), coeff(E1, V1(4)), coeff(E1, V2(4)), coeff(E1, W(4)), coeff(E1, V1(5)), coeff(E1, V2(5)), coeff(E1, W(5))], [coeff(E2, V1(0)), coeff(E2, V2(0)), coeff(E2, W(0)), coeff(E2, V1(1)), coeff(E2, V2(1)), coeff(E2, W(1)), coeff(E2, V1(2)), coeff(E2, V2(2)), coeff(E2, W(2)), coeff(E2, V1(3)), coeff(E2, V2(3)), coeff(E2, W(3)), coeff(E2, V1(4)), coeff(E2, V2(4)), coeff(E2, W(4)), coeff(E2, V1(5)), coeff(E2, V2(5)), coeff(E2, W(5))], [coeff(E3, V1(0)), coeff(E3, V2(0)), coeff(E3, W(0)), coeff(E3, V1(1)), coeff(E3, V2(1)), coeff(E3, W(1)), coeff(E3, V1(2)), coeff(E3, V2(2)), coeff(E3, W(2)), coeff(E3, V1(3)), coeff(E3, V2(3)), coeff(E3, W(3)), coeff(E3, V1(4)), coeff(E3, V2(4)), coeff(E3, W(4)), coeff(E3, V1(5)), coeff(E3, V2(5)), coeff(E3, W(5))], [coeff(E4, V1(0)), coeff(E4, V2(0)), coeff(E4, W(0)), coeff(E4, V1(1)), coeff(E4, V2(1)), coeff(E4, W(1)), coeff(E4, V1(2)), coeff(E4, V2(2)), coeff(E4, W(2)), coeff(E4, V1(3)), coeff(E4, V2(3)), coeff(E4, W(3)), coeff(E4, V1(4)), coeff(E4, V2(4)), coeff(E4, W(4)), coeff(E4, V1(5)), coeff(E4, V2(5)), coeff(E4, W(5))], [coeff(E5, V1(0)), coeff(E5, V2(0)), coeff(E5, W(0)), coeff(E5, V1(1)), coeff(E5, V2(1)), coeff(E5, W(1)), coeff(E5, V1(2)), coeff(E5, V2(2)), coeff(E5, W(2)), coeff(E5, V1(3)), coeff(E5, V2(3)), coeff(E5, W(3)), coeff(E5, V1(4)), coeff(E5, V2(4)), coeff(E5, W(4)), coeff(E5, V1(5)), coeff(E5, V2(5)), coeff(E5, W(5))], [coeff(E6, V1(0)), coeff(E6, V2(0)), coeff(E6, W(0)), coeff(E6, V1(1)), coeff(E6, V2(1)), coeff(E6, W(1)), coeff(E6, V1(2)), coeff(E6, V2(2)), coeff(E6, W(2)), coeff(E6, V1(3)), coeff(E6, V2(3)), coeff(E6, W(3)), coeff(E6, V1(4)), coeff(E6, V2(4)), coeff(E6, W(4)), coeff(E6, V1(5)), coeff(E6, V2(5)), coeff(E6, W(5))], [coeff(E7, V1(0)), coeff(E7, V2(0)), coeff(E7, W(0)), coeff(E7, V1(1)), coeff(E7, V2(1)), coeff(E7, W(1)), coeff(E7, V1(2)), coeff(E7, V2(2)), coeff(E7, W(2)), coeff(E7, V1(3)), coeff(E7, V2(3)), coeff(E7, W(3)), coeff(E7, V1(4)), coeff(E7, V2(4)), coeff(E7, W(4)), coeff(E7, V1(5)), coeff(E7, V2(5)), coeff(E7, W(5))], [coeff(E8, V1(0)), coeff(E8, V2(0)), coeff(E8, W(0)), coeff(E8, V1(1)), coeff(E8, V2(1)), coeff(E8, W(1)), coeff(E8, V1(2)), coeff(E8, V2(2)), coeff(E8, W(2)), coeff(E8, V1(3)), coeff(E8, V2(3)), coeff(E8, W(3)), coeff(E8, V1(4)), coeff(E8, V2(4)), coeff(E8, W(4)), coeff(E8, V1(5)), coeff(E8, V2(5)), coeff(E8, W(5))], [coeff(E9, V1(0)), coeff(E9, V2(0)), coeff(E9, W(0)), coeff(E9, V1(1)), coeff(E9, V2(1)), coeff(E9, W(1)), coeff(E9, V1(2)), coeff(E9, V2(2)), coeff(E9, W(2)), coeff(E9, V1(3)), coeff(E9, V2(3)), coeff(E9, W(3)), coeff(E9, V1(4)), coeff(E9, V2(4)), coeff(E9, W(4)), coeff(E9, V1(5)), coeff(E9, V2(5)), coeff(E9, W(5))], [coeff(E10, V1(0)), coeff(E10, V2(0)), coeff(E10, W(0)), coeff(E10, V1(1)), coeff(E10, V2(1)), coeff(E10, W(1)), coeff(E10, V1(2)), coeff(E10, V2(2)), coeff(E10, W(2)), coeff(E10, V1(3)), coeff(E10, V2(3)), coeff(E10, W(3)), coeff(E10, V1(4)), coeff(E10, V2(4)), coeff(E10, W(4)), coeff(E10, V1(5)), coeff(E10, V2(5)), coeff(E10, W(5))], [coeff(E11, V1(0)), coeff(E11, V2(0)), coeff(E11, W(0)), coeff(E11, V1(1)), coeff(E11, V2(1)), coeff(E11, W(1)), coeff(E11, V1(2)), coeff(E11, V2(2)), coeff(E11, W(2)), coeff(E11, V1(3)), coeff(E11, V2(3)), coeff(E11, W(3)), coeff(E11, V1(4)), coeff(E11, V2(4)), coeff(E11, W(4)), coeff(E11, V1(5)), coeff(E11, V2(5)), coeff(E11, W(5))], [coeff(E12, V1(0)), coeff(E12, V2(0)), coeff(E12, W(0)), coeff(E12, V1(1)), coeff(E12, V2(1)), coeff(E12, W(1)), coeff(E12, V1(2)), coeff(E12, V2(2)), coeff(E12, W(2)), coeff(E12, V1(3)), coeff(E12, V2(3)), coeff(E12, W(3)), coeff(E12, V1(4)), coeff(E12, V2(4)), coeff(E12, W(4)), coeff(E12, V1(5)), coeff(E12, V2(5)), coeff(E12, W(5))], [coeff(E13, V1(0)), coeff(E13, V2(0)), coeff(E13, W(0)), coeff(E13, V1(1)), coeff(E13, V2(1)), coeff(E13, W(1)), coeff(E13, V1(2)), coeff(E13, V2(2)), coeff(E13, W(2)), coeff(E13, V1(3)), coeff(E13, V2(3)), coeff(E13, W(3)), coeff(E13, V1(4)), coeff(E13, V2(4)), coeff(E13, W(4)), coeff(E13, V1(5)), coeff(E13, V2(5)), coeff(E13, W(5))], [coeff(E14, V1(0)), coeff(E14, V2(0)), coeff(E14, W(0)), coeff(E14, V1(1)), coeff(E14, V2(1)), coeff(E14, W(1)), coeff(E14, V1(2)), coeff(E14, V2(2)), coeff(E14, W(2)), coeff(E14, V1(3)), coeff(E14, V2(3)), coeff(E14, W(3)), coeff(E14, V1(4)), coeff(E14, V2(4)), coeff(E14, W(4)), coeff(E14, V1(5)), coeff(E14, V2(5)), coeff(E14, W(5))], [coeff(E15, V1(0)), coeff(E15, V2(0)), coeff(E15, W(0)), coeff(E15, V1(1)), coeff(E15, V2(1)), coeff(E15, W(1)), coeff(E15, V1(2)), coeff(E15, V2(2)), coeff(E15, W(2)), coeff(E15, V1(3)), coeff(E15, V2(3)), coeff(E15, W(3)), coeff(E15, V1(4)), coeff(E15, V2(4)), coeff(E15, W(4)), coeff(E15, V1(5)), coeff(E15, V2(5)), coeff(E15, W(5))], [coeff(E16, V1(0)), coeff(E16, V2(0)), coeff(E16, W(0)), coeff(E16, V1(1)), coeff(E16, V2(1)), coeff(E16, W(1)), coeff(E16, V1(2)), coeff(E16, V2(2)), coeff(E16, W(2)), coeff(E16, V1(3)), coeff(E16, V2(3)), coeff(E16, W(3)), coeff(E16, V1(4)), coeff(E16, V2(4)), coeff(E16, W(4)), coeff(E16, V1(5)), coeff(E16, V2(5)), coeff(E16, W(5))], [coeff(E17, V1(0)), coeff(E17, V2(0)), coeff(E17, W(0)), coeff(E17, V1(1)), coeff(E17, V2(1)), coeff(E17, W(1)), coeff(E17, V1(2)), coeff(E17, V2(2)), coeff(E17, W(2)), coeff(E17, V1(3)), coeff(E17, V2(3)), coeff(E17, W(3)), coeff(E17, V1(4)), coeff(E17, V2(4)), coeff(E17, W(4)), coeff(E17, V1(5)), coeff(E17, V2(5)), coeff(E17, W(5))], [coeff(E18, V1(0)), coeff(E18, V2(0)), coeff(E18, W(0)), coeff(E18, V1(1)), coeff(E18, V2(1)), coeff(E18, W(1)), coeff(E18, V1(2)), coeff(E18, V2(2)), coeff(E18, W(2)), coeff(E18, V1(3)), coeff(E18, V2(3)), coeff(E18, W(3)), coeff(E18, V1(4)), coeff(E18, V2(4)), coeff(E18, W(4)), coeff(E18, V1(5)), coeff(E18, V2(5)), coeff(E18, W(5))]]); RR := subs(omega = evalf(Omega*sqrt(E_c/rho_c)/h), q); Y := Determinant(RR); with(LinearAlgebra); Sol := [fsolve(Y, Omega)]; J := min(select(`>`, Sol, 0))

Error, selecting function must return true or false

 

``


 

Download ZrO2.mw

 

 

I'm defining forces. The only thing I changed is x to y for one particular piece of an equation. I copied and pasted it so I don't see why it's not working.

opparam_fail.mw

Hello all, 

 

This is my first time with Maple, I have been a student of Mathematica for 7 years. I purchased Maple to learn a new software and I have heard great things about it. I somehow dont feel the flexibility of Mathematica in Maple documentations. It seems to be a bit constrained and not very straight forward in some aspects. Please correct me if I am wrong and also point out to tutorials or documents that I should be looking at before nose diving into Maple.

worksheet example here: 

I have faced 2 simple problems which I think is a bug in some form, or I may be wrong. Please advise.

  1. How do I insert Equation 7 before Equation 6? The worksheet wont let me do it.
  2. Why are 'and' and 'in' bolded automatically in SECTION format?

hello experts,

I was using maple for a physical  problem,

and things turned very complicated with a equation with bessel function in it,

like this BesselI(1, (0.9067480359e-2+0.9067480359e-2*I)*sqrt(f))andBesselI(0., (0.9067480359e-2+0.9067480359e-2*I)*sqrt(f)),

which include complex,

the whole equation is as followed:

the variable is f and RV,,dependent variable is RV.

how am I supposed to plot RV when f=100..4000?

it is certain RV has real part and imaginary part,maybe i need a 3Dplot?

please let me know if you have any idea.

best regards,


 

-7.873519774*10^18*RV^4+(2.676513624*10^12-3.842712573*10^15*(-1)^(3/4)*BesselI(1, 0.1282335370e-1*(-1)^(1/4)*sqrt(f))/(Pi*sqrt(f)*BesselI(0, 0.1282335370e-1*(-1)^(1/4)*sqrt(f))*(4+623.8617593*(-1)^(3/4)*BesselI(1, 0.1282335370e-1*(-1)^(1/4)*sqrt(f))/(BesselI(0, 0.1282335370e-1*(-1)^(1/4)*sqrt(f))*sqrt(f)))))*RV^2+80864.83845+1.440831316*10^9*(-1)^(3/4)*BesselI(1, 0.1282335370e-1*(-1)^(1/4)*sqrt(f))/(Pi*sqrt(f)*BesselI(0, 0.1282335370e-1*(-1)^(1/4)*sqrt(f))*(4+623.8617593*(-1)^(3/4)*BesselI(1, 0.1282335370e-1*(-1)^(1/4)*sqrt(f))/(BesselI(0, 0.1282335370e-1*(-1)^(1/4)*sqrt(f))*sqrt(f)))) = 0
 

want to plot the relationship between RV and f,but how?

 

complexplot(RV, f = 100 .. 4000, labels = ["Re", "Im"])

complexplot(RV, f = 100 .. 4000, labels = ["Re", "Im"])

(1)

NULL


 

Download bessel_in_equation.mw

 

i am trying to write the differential equation 

u_{t}=u_{xx}+2u^{2}(1-u) in my maple 15. 

but it shows error,

Error, empty number and  1 additional error.
 

How to label in inline math mode. I tried labels = ['theta', Typesetting:-Typeset(cos(1/theta)/sqrt(1-theta^2))] which gives a big expression on Y axis spreaded in two lines. But i want to label one line as in latex $\cos(1/\theta)/sqrt(1-\theta^2))$ . Is there a way to do it ?

I'm new to maple and I'm trying to write code in worksheet mode with some source code I have, I don't understand some of the syntax though, like the next:

m,  mass
r,  radius

J=m*r^2; Inertia

 

m and r are variables, so does this syntax mean that after the comma I set a name or label to the variables? because I tried to follow the same logic with 2d input math but it doesn´t work.
 

Hello!

I am working with the Maple 18.02 version. I just want want to perform a basic polynomial expansion using the command "expand" and it does not respond as it should according to what Maple Programming Help says it would. For example:

Maple Programming Help says:

I get:

.

Also, one sees that this isn't even true, as x(x+2) + 1 = x^2 +2x +1, which is not equal to x^2 + 3x +2.

Moreover, maple tells me it is equal..:

What is going on here? I woul like to get the full expanded form (without factors). Also, this is obviously not true, or maybe Maple means something else by x(x+2) +1...

Thank you!

Hi there,

I'm new here. My first question:

Is there a way to make Maple output display explicit multiplcations signs in 2D-math?

Example:
When you enter 5*2^x Maple will output 5*2^x. Is there a way to make Maple display the multiplications signs in output in stead just implicit multiplication signs (i.e. whitepaces)? (I would settle for Maple display all multiplication signs in output - not just the ones which are made explicit in the input.)

I searched this site. No luck. I looked into "Typesetting Rule Assistant", but I couldn't find a way to alter the output of multiplication sign (*).

Can you guys help me?

Kind Regards,

Jens

 

P.S.: I'm a teacher from Denmark. We use Maple before college/university for a lot of pupils. Some less competent pupils have a tendency to overlook the whitespace.

A bit of an annoyance. 

typing 'numerator' / 'denominator' generates an error.  The first quote never gets automatically grouped as it should.

Two workarounds.  The first is to move to, and delete the first quote and re-enter it again in front of numerator.
The second is to use brackets, although one shouldn't have to.

I'm looking over a file someone else made (I jusut have the image of it not the .mw), and there's a line that looks like this:

H1|
    | t=0.45.

H1 is an equation is set from an interpolation expansion line, and I believe this input solves the equation when the variable t is equal to 0.45. But how do I enter this into Maple? Thanks.

Hey, I recently switched to Maple 2016, but now whenever I write equations in the text field it calculates it like if it was a math problem it had to solve, but I just want it to be text, nothing else.

Do you know of any way to turn this off? As in Maple 2015 I could write equations in the text field, and when I ran the worksheet through it wouldn't try to calculate text fields, but 2016 calculates the text fields and shows the solution as a blue text... So annoying.

Previous year I was using Maple 2015 and I had a procedure in which I had used

A := Array((1 .. 3)$3);

And similar use of $. This year I'm using Maple 2016. Now I came back to my old procedure but Maple doesn't compile the procedure anymore and instead shows

Error, `$` unexpected
What is the problem? Is something changed in new version of Maple?

Why I use Array and $ is my old question here http://www.mapleprimes.com/questions/210628-Undefined-For-Loop-Bound which was fine before.

Hi @ all,

I was wondering if there is a way to display every character that i type in maple math input without any kind of automatic text editing (neither adding nor removing characters).

I find it very cumbersome to read and edit the modified input (afaik just from looking at a simple piece of printed (black and white on pamper) code it is impossible to destinguish atomic variables and indexed variables due to automatic text edit of the input to lower script in both cases).

 

Example 1: "True" Low Script (Not indexed variable!)
> a__1 :=3:

When I type this in 2-D Math Input (or Maple Input) the cursor jumps to lower script (atomic variable) after the second underscore which is not what i want to happen. After evaluating the expression it is very neat to see the "1" as lower sript but not during typing. Any mode or something to achieve this?

2. Example: Use a loop for dynamic variable creation (not because it is smart to do so but to illustrate my problem with maple input and automated text edit)

> for i from 1 to 4 do:
> x__||i:=1:
> end do:

I can not type this directly in any kind of maple input I have found. The concatenate symbol will be interpreted as subscript without escaping the automatically entered "atomic variable" mode which causes an error. After I use the arrow key to type "||i" outside "atomic variable mode" the loop variable i is not used as index anymore but instead appended to x as a number. But what i want is a dynamic variable creation with "true" numbered subscripts. I could use a longer version with cat() but this sucks (or I simply do not know how to type it properly).

I do not want to use or see atomic variables during input (or any kind of automatic text editing during input for that matter) !

So what I do Instead is I use a texteditor to type away, paste the code to maple and execute it. Works like a charm and my fingers do not have to leave their designated spots on the keyboard and i can type way faster. Furthermore I can always copy the code back to notepad++ and use regex to make a lot of simultaneous replacements at once whereas this is quite difficult with code that i typed in maple.

 

So how do I turn off automated text edit of the input? Or should I use anything else then a worksheet?

Cheers
Zorg

1 2 3 4 Page 1 of 4