Items tagged with boundary-conditions


Hi Everybody,

I have a simple question: Does Maple solve systems of partial differential equations with boundary conditions?

Can somebody give me an example? 

I have only found numerical solutions to this kind of systems but no symbolic example.

Thanks a lot for yor help.

There are 2 questions actually. The first as the title says is about taking the integral. I have 2 functions that were found numerically from the system of differential equations (see the file), and I need to take the integral of the expression that includes both of them. Maple gives me something like Int () = Int (), so it doesn't solve anything. Why can it be?

The second question is about varying the boundary conditions. If, for example, I have the system with the condition like R(x_0)=R_0, can I get the plot  of R(x,R_0)? In my case I need to vary conditions on R and mu (R(0)=R_0 and mu(0)=mu_0) and then get the plot of the integral in relation to R_0 and mu_0. Is it even possible?

Hello everyone,


     I am having trouble trying to solve a system of differential equations. The modeling was made from the equilibrium equations of a pressure vessel. The set of equations is shown below:

     As you see it is a set of two second-order partial differential equations. So, we need four boundary conditions. This one is the first. It means that the left end of the pressure vessel is fixed.

This one is the second boundary condition. It means that the right end of the pressure vessel is free.

This one is the third boundary condition. It means that the inner surface of the pressure vessel is subject to an external load:

At last, we have the fourth boundary condition. It means that the outer surface of the pressure vessel is free.

     The first test I have been trying to do is the static case. In this case, the time terms (the right side of the two equations shown) is zero.

    The maple commands that I am using are the following:


restart; E := 200*10^9; nu := .33; G := E/(2*(1+nu)); RI := 0.254e-1; RO := 2*RI; p := proc (x) options operator, arrow; 50000000 end proc; sys := [E*(nu*(diff(v(x, r), x))/r+nu*(diff(diff(v(x, r), x), r))+(1-nu)*(diff(diff(u(x, r), x), x)))/(-2*nu^2-nu+1)+G*(diff(diff(u(x, r), r), r)+diff(diff(v(x, r), x), r)+(diff(u(x, r), r))/r+(diff(v(x, r), x))/r) = 0, E*((1-nu)*(diff(diff(v(x, r), r), r))+nu*(diff(diff(u(x, r), x), r))+(1-nu)*(diff(v(x, r), r))/r-(1-nu)*v(x, r)/r^2)/(-2*nu^2-nu+1)+G*(diff(diff(u(x, r), r), x)+diff(diff(v(x, r), x), x)) = 0]; BCs := {E*(nu*v(L, r)/r+nu*(D[2](v))(L, r)+(1-nu)*(D[1](u))(L, r))/(-2*nu^2-nu+1) = 0, E*(nu*v(x, RI)/RI+(1-nu)*(D[2](v))(x, RI)+nu*(D[1](u))(x, RI))/(-2*nu^2-nu+1) = -p(x), E*(nu*v(x, RO)/RO+(1-nu)*(D[2](v))(x, RO)+nu*(D[1](u))(x, RO))/(-2*nu^2-nu+1) = 0, u(0, r) = 0}

sol := pdsolve(sys, BCs, numeric)


I am getting the following error:


Error, (in pdsolve/numeric/process_IBCs) initial/boundary conditions must depend upon exactly one of the independent variables: 0.1459531181e12*v(L, r)/r+0.1459531181e12*(D[2](v))(L, r)+0.2963290579e12*(D[1](u))(L, r) = 0

In this case, my boundary conditions do depend on more than one independent variable. How do I proceed?


Thank you in advance,

Pedro Guaraldi



Page 1 of 1