Items tagged with method

Feed

> restart;
> libname = [shootlib, libname];
> with(shoot);
Error, invalid input: with expects its 1st argument, pname, to be of type {`module`, package}, but received shoot
> with(plots);
Pr := 10; s = -.1; lambda := 0; Gr := 1.0; Gm := 1.0; beta := -1.20;
10
s = -0.1
0
1.0
1.0
-1.20
> M := 0.; z := .1; Xi := .5; Nt := .5; Nb := .2; l := 5; Nr := .5; epsilon1 := .2; epsilon2 := .2;
0.
0.1
0.5
0.5
0.2
5
0.5
0.2
0.2
> Prff := Pr/(1+4.*N*(1/3));
10
-----------------
1 + 1.333333333 N
> FNS := {f(eta), h(eta), r(eta), u(eta), v(eta), theta(eta), `ϕ`(eta)};
{f(eta), h(eta), r(eta), u(eta), v(eta), theta(eta), ϕ(eta)}
> ODE := {diff(h(eta), eta)+.75*l*f(eta)*h(eta)-(1/4)*l*u(eta)*epsilon2-Nt*(.75*f(eta)*r(eta)-(1/4)*u(eta)*epsilon1+Nb*r(eta)*h(eta)+Nt*r(eta)*r(eta))/Nb = 0, .75*f(eta)*r(eta)+diff(r(eta), eta)-(1/4)*u(eta)*epsilon1+Nb*r(eta)*h(eta)+Nt*r(eta)*r(eta) = 0, diff(v(eta), eta)+3*(f(eta)*v(eta)-u(eta)*u(eta))/(4*Pr)-(M+lambda)*u(eta)+theta(eta)-Nr*`ϕ`(eta) = 0, diff(f(eta), eta) = u(eta), diff(u(eta), eta) = v(eta), diff(theta(eta), eta) = r(eta), diff(`ϕ`(eta), eta) = h(eta)};
/ / d \
{ 0.75 f(eta) r(eta) + |----- r(eta)| - 0.05000000000 u(eta)
\ \ deta /

2 / d \ 3
+ 0.2 r(eta) h(eta) + 0.5 r(eta) = 0, |----- v(eta)| + -- f(eta) v(eta)
\ deta / 40

3 2 / d \
- -- u(eta) + theta(eta) - 0.5 ϕ(eta) = 0, |----- h(eta)|
40 \ deta /

+ 3.75 f(eta) h(eta) - 0.1250000000 u(eta) - 1.875000000 f(eta) r(eta)

2
- 0.5000000000 r(eta) h(eta) - 1.250000000 r(eta) = 0,

d d d
----- f(eta) = u(eta), ----- u(eta) = v(eta), ----- theta(eta) = r(eta),
deta deta deta

d \
----- ϕ(eta) = h(eta) }
deta /
> IC := {f(0) = s, h(0) = xi, r(0) = tau, u(0) = 0, v(0) = alpha(0), theta(0) = 1-(1/4)*epsilon1, `ϕ`(0) = (1/4)*epsilon2};
{f(0) = s, h(0) = xi, r(0) = tau, u(0) = 0, v(0) = alpha(0),

theta(0) = 0.9500000000, ϕ(0) = 0.05000000000}
> L := 2;
2
> BC = {u(L) = 0, theta(L) = 0, `ϕ`(L) = 0};
BC = {u(2) = 0, theta(2) = 0, ϕ(2) = 0}
> S := Shoot(ODE, IC, BC, FNS, [alpha = .42453091564332, tau = -.21166705749821127, xi = -.4944583739651814]);
/ / / d \
Shoot|{ 0.75 f(eta) r(eta) + |----- r(eta)| - 0.05000000000 u(eta)
\ \ \ deta /

2 / d \ 3
+ 0.2 r(eta) h(eta) + 0.5 r(eta) = 0, |----- v(eta)| + -- f(eta) v(eta)
\ deta / 40

3 2 / d \
- -- u(eta) + theta(eta) - 0.5 ϕ(eta) = 0, |----- h(eta)|
40 \ deta /

+ 3.75 f(eta) h(eta) - 0.1250000000 u(eta) - 1.875000000 f(eta) r(eta)

2
- 0.5000000000 r(eta) h(eta) - 1.250000000 r(eta) = 0,

d d d
----- f(eta) = u(eta), ----- u(eta) = v(eta), ----- theta(eta) = r(eta),
deta deta deta

d \
----- ϕ(eta) = h(eta) }, {f(0) = s, h(0) = xi, r(0) = tau, u(0) = 0,
deta /

v(0) = alpha(0), theta(0) = 0.9500000000, ϕ(0) = 0.05000000000}, BC,

{f(eta), h(eta), r(eta), u(eta), v(eta), theta(eta), ϕ(eta)}, [

alpha = 0.42453091564332, tau = -0.21166705749821127,

\
xi = -0.4944583739651814]|
/
RungeKutta(ODE, BC, alpha = .42453091564332, tau = -.21166705749821127, xi = -.4944583739651814, output=plot);
/ / / d \
RungeKutta|{ 0.75 f(eta) r(eta) + |----- r(eta)| - 0.05000000000 u(eta)
\ \ \ deta /

2 / d \ 3
+ 0.2 r(eta) h(eta) + 0.5 r(eta) = 0, |----- v(eta)| + -- f(eta) v(eta)
\ deta / 40

3 2 / d \
- -- u(eta) + theta(eta) - 0.5 ϕ(eta) = 0, |----- h(eta)|
40 \ deta /

+ 3.75 f(eta) h(eta) - 0.1250000000 u(eta) - 1.875000000 f(eta) r(eta)

2
- 0.5000000000 r(eta) h(eta) - 1.250000000 r(eta) = 0,

d d d
----- f(eta) = u(eta), ----- u(eta) = v(eta), ----- theta(eta) = r(eta),
deta deta deta

d \
----- ϕ(eta) = h(eta) }, BC, alpha = 0.42453091564332,
deta /

\
tau = -0.21166705749821127, xi = -0.4944583739651814, output = plot|
/
>

 

 

Dear sir 

in the above problem im geiitng the problem with , with(shoot) command and even it is not executing at

S := Shoot(ODE, IC, BC, FNS, [alpha = .42453091564332, tau = -.21166705749821127, xi = -.4944583739651814]) this command, here alpha,tau and zi variable should change.

        General description of the method of solving underdetermined systems of equations. As a particular application of the idea proposed a universal method  kinematic analysis for all kinds of  spatial and planar link mechanisms with any number degrees of freedom.  The method can be used for powerful CAD linkages.   
         http://www.maplesoft.com/applications/view.aspx?SID=154228

       


      Some examples of a much larger number calculated by the proposed method. Examples gathered here not to look for them on the forum and opportunity to demonstrate the method.  Among the examples, I think, there are very complicated.

https://vk.com/doc242471809_408704758
https://vk.com/doc242471809_408704572
https://vk.com/doc242471809_376439263
https://vk.com/doc242471809_402619761
https://vk.com/doc242471809_402610228
https://vk.com/doc242471809_401188803
https://vk.com/doc242471809_400465891
https://vk.com/doc242471809_400711315
https://vk.com/doc242471809_387358164
https://vk.com/doc242471809_380837279
https://vk.com/doc242471809_379935473
https://vk.com/doc242471809_380217387
https://vk.com/doc242471809_363266817
https://vk.com/doc242471809_353980472
https://vk.com/doc242471809_375452868
https://vk.com/doc242471809_353988163 
https://vk.com/doc242471809_353986884 
https://vk.com/doc242471809_353987119
https://vk.com/doc242471809_324249241
https://vk.com/doc242471809_324102889
https://vk.com/doc242471809_322219275
https://vk.com/doc242471809_437298137
https://vk.com/doc242471809_437308238
https://vk.com/doc242471809_437308241
https://vk.com/doc242471809_437308243
https://vk.com/doc242471809_437308245
https://vk.com/doc242471809_437308246
https://vk.com/doc242471809_437401651
https://vk.com/doc242471809_437664558

 

 

HI.please help me for solve differenrtial equation with finite difference method not dsolve numeric solver in maple

thanks

FDM2.mw

L := 1/50000000; -1; eta := 1; -1; PDE[111] := 7.65692307692309*10^(-8)*(diff(f1(x), x, x, x, x))-1.56784615384616*10^12*(diff(f1(x), x, x))+220.592307692308*(diff(f2(x), x, x, x))-3.52947692307693*10^21*(diff(f2(x), x))+43.7538461538462*(diff(f3(x), x, x, x))+4.81292307692309*10^20*(diff(f3(x), x))+6.50473846153848*10^30*f1(x)-7.90000000000000*10^(-8)*eta*f1(x)

0.7656923077e-7*(diff(diff(diff(diff(f1(x), x), x), x), x))-0.1567846154e13*(diff(diff(f1(x), x), x))+220.592307692308*(diff(diff(diff(f2(x), x), x), x))-0.3529476923e22*(diff(f2(x), x))+43.7538461538462*(diff(diff(diff(f3(x), x), x), x))+0.4812923077e21*(diff(f3(x), x))+0.6504738462e31*f1(x)

(1)

PDE[222] := 2.14211538461539*10^(-8)*(diff(f2(x), x, x, x, x))-1.64988461538462*10^12*(diff(f2(x), x, x))+7.90486153846156*10^30*f2(x)-220.592307692308*(diff(f1(x), x, x, x))+3.52947692307693*10^21*(diff(f1(x), x))-5.94323076923080*10^11*(diff(f3(x), x, x))+5.13378461538463*10^30*f3(x)-7.90000000000000*10^(-8)*eta*f2(x)

0.2142115385e-7*(diff(diff(diff(diff(f2(x), x), x), x), x))-0.1649884615e13*(diff(diff(f2(x), x), x))+0.7904861538e31*f2(x)-220.592307692308*(diff(diff(diff(f1(x), x), x), x))+0.3529476923e22*(diff(f1(x), x))-0.5943230769e12*(diff(diff(f3(x), x), x))+0.5133784615e31*f3(x)

(2)

PDE[333] := -6.38076923076924*10^(-31)*(diff(f3(x), x, x, x, x, x, x))+9.66537046153848*10^(-8)*(diff(f3(x), x, x, x, x))-3.10154753538461*10^12*(diff(f3(x), x, x))-43.7538461538462*(diff(f1(x), x, x, x))-4.81292307692309*10^20*(diff(f1(x), x))-5.94323076923080*10^11*(diff(f2(x), x, x))+5.13378461538463*10^30*f2(x)+2.29989058707693*10^31*f3(x)-7.90105333333333*10^(-8)*omega^2*f3(x)+6.58333333333333*10^(-31)*eta*(diff(f3(x), x, x))

-0.6380769231e-30*(diff(diff(diff(diff(diff(diff(f3(x), x), x), x), x), x), x))+0.9665370462e-7*(diff(diff(diff(diff(f3(x), x), x), x), x))-0.3101547535e13*(diff(diff(f3(x), x), x))-43.7538461538462*(diff(diff(diff(f1(x), x), x), x))-0.4812923077e21*(diff(f1(x), x))-0.5943230769e12*(diff(diff(f2(x), x), x))+0.5133784615e31*f2(x)+0.2299890587e32*f3(x)-0.7901053333e-7*omega^2*f3(x)

(3)

bcs := {f1(0) = 0, f1(L) = 0, f2(0) = 0, f2(L) = 0, f3(0) = 0, f3(L) = 0, ((D@@1)(f1))(0) = 0, ((D@@1)(f1))(L) = 0, ((D@@1)(f2))(0) = 0, ((D@@1)(f2))(L) = 0, ((D@@1)(f3))(0) = 0, ((D@@1)(f3))(L) = 0, ((D@@2)(f3))(0) = 0, ((D@@2)(f3))(L) = 0}

{f1(0) = 0, f1(1/50000000) = 0, f2(0) = 0, f2(1/50000000) = 0, f3(0) = 0, f3(1/50000000) = 0, (D(f1))(0) = 0, (D(f1))(1/50000000) = 0, (D(f2))(0) = 0, (D(f2))(1/50000000) = 0, (D(f3))(0) = 0, (D(f3))(1/50000000) = 0, ((D@@2)(f3))(0) = 0, ((D@@2)(f3))(1/50000000) = 0}

(4)

``


Download FDM2.mw

Hi, i am trying to solve my PDEs with HPM method ,but i get strange errors.

first one is :Error, (in trig/reduce/reduce) Maple was unable to allocate enough memory to complete this computation.  Please see ?alloc,

but when i run my last function again,the error chages,let me show you.


restart;
lambda:=0.5;K[r]:=0.5;Sc:=0.5;Nb:=0.1;Nt:=0.1;Pr:=10;
                              0.5
                              0.5
                              0.5
                              0.1
                              0.1
                               10
> EQUATIONS;


equ1:=diff(f(eta),eta$4)-R*(diff(f(eta),eta)*diff(f(eta),eta$2)-f(eta)*diff(f(eta),eta$2))-2*K[r]*diff(g(eta),eta)=0;

equ2:=diff(g(eta),eta$2)-R*(diff(f(eta),eta)*g(eta)-f(eta)*diff(g(eta),eta))+2*K[r]*diff(f(eta),eta)=0;

equ3:=diff(theta(eta),eta$2)+Pr*R*f(eta)*diff(theta(eta),eta)+Nb*diff(phi(eta),eta)*diff(theta(eta),eta)+Nt*diff(theta(eta),eta)^2=0;

equ4:=diff(phi(eta),eta$2)+R*Sc*f(eta)*diff(phi(eta),eta)+diff(theta(eta),eta$2)*(Nt/Nb)=0;
/  d   /  d   /  d   /  d         \\\\     //  d         \ /  d  
|----- |----- |----- |----- f(eta)|||| - R ||----- f(eta)| |-----
\ deta \ deta \ deta \ deta       ////     \\ deta       / \ deta

   /  d         \\          /  d   /  d         \\\
   |----- f(eta)|| - f(eta) |----- |----- f(eta)|||
   \ deta       //          \ deta \ deta       ///

         /  d         \    
   - 1.0 |----- g(eta)| = 0
         \ deta       /    
     /  d   /  d         \\
     |----- |----- g(eta)||
     \ deta \ deta       //

            //  d         \                 /  d         \\
        - R ||----- f(eta)| g(eta) - f(eta) |----- g(eta)||
            \\ deta       /                 \ deta       //

              /  d         \    
        + 1.0 |----- f(eta)| = 0
              \ deta       /    
  /  d   /  d             \\               /  d             \
  |----- |----- theta(eta)|| + 10 R f(eta) |----- theta(eta)|
  \ deta \ deta           //               \ deta           /

           /  d           \ /  d             \
     + 0.1 |----- phi(eta)| |----- theta(eta)|
           \ deta         / \ deta           /

                             2    
           /  d             \     
     + 0.1 |----- theta(eta)|  = 0
           \ deta           /     
    /  d   /  d           \\                /  d           \
    |----- |----- phi(eta)|| + 0.5 R f(eta) |----- phi(eta)|
    \ deta \ deta         //                \ deta         /

                     /  d   /  d             \\    
       + 1.000000000 |----- |----- theta(eta)|| = 0
                     \ deta \ deta           //    
> BOUNDARY*CONDITIONS;


ics:=
f(0)=0,D(f)(0)=1,g(0)=0,theta(0)=1,phi(0)=1;
f(1)=lambda,D(f)(1)=0,g(1)=0,theta(1)=0,phi(1)=0;
   f(0) = 0, D(f)(0) = 1, g(0) = 0, theta(0) = 1, phi(0) = 1
  f(1) = 0.5, D(f)(1) = 0, g(1) = 0, theta(1) = 0, phi(1) = 0
> HPMs;


hpm1:=(1-p)*(diff(f(eta),eta$4)-2*K[r]*diff(g(eta),eta))+p*(diff(f(eta),eta$4)-R*(diff(f(eta),eta)*diff(f(eta),eta$2)-f(eta)*diff(f(eta),eta$2))-2*K[r]*diff(g(eta),eta))=0;

hpm2:=(1-p)*(diff(g(eta),eta$2)+2*K[r]*diff(f(eta),eta))+p*(diff(g(eta),eta$2)-R*(diff(f(eta),eta)*g(eta)-f(eta)*diff(g(eta),eta))+2*K[r]*diff(f(eta),eta))=0;

hpm3:=(1-p)*(diff(theta(eta),eta$2))+p*(diff(theta(eta),eta$2)+Pr*R*f(eta)*diff(theta(eta),eta)+Nb*diff(phi(eta),eta)*diff(theta(eta),eta)+Nt*diff(theta(eta),eta)^2)=0;

hpm4:=(1-p)*(diff(phi(eta),eta$2)+diff(theta(eta),eta$2)*(Nt/Nb))+p*(diff(phi(eta),eta$2)+R*Sc*f(eta)*diff(phi(eta),eta)+diff(theta(eta),eta$2)*(Nt/Nb))=0;

        //  d   /  d   /  d   /  d         \\\\
(1 - p) ||----- |----- |----- |----- f(eta)||||
        \\ deta \ deta \ deta \ deta       ////

         /  d         \\     //  d   /  d   /  d   /  d         \
   - 1.0 |----- g(eta)|| + p ||----- |----- |----- |----- f(eta)|
         \ deta       //     \\ deta \ deta \ deta \ deta       /

  \\\     //  d         \ /  d   /  d         \\
  ||| - R ||----- f(eta)| |----- |----- f(eta)||
  ///     \\ deta       / \ deta \ deta       //

            /  d   /  d         \\\       /  d         \\    
   - f(eta) |----- |----- f(eta)||| - 1.0 |----- g(eta)|| = 0
            \ deta \ deta       ///       \ deta       //    
        //  d   /  d         \\       /  d         \\     //  d  
(1 - p) ||----- |----- g(eta)|| + 1.0 |----- f(eta)|| + p ||-----
        \\ deta \ deta       //       \ deta       //     \\ deta

   /  d         \\
   |----- g(eta)||
   \ deta       //

       //  d         \                 /  d         \\
   - R ||----- f(eta)| g(eta) - f(eta) |----- g(eta)||
       \\ deta       /                 \ deta       //

         /  d         \\    
   + 1.0 |----- f(eta)|| = 0
         \ deta       //    
                                       /                         
        /  d   /  d             \\     |/  d   /  d             \
(1 - p) |----- |----- theta(eta)|| + p ||----- |----- theta(eta)|
        \ deta \ deta           //     \\ deta \ deta           /

  \               /  d             \
  | + 10 R f(eta) |----- theta(eta)|
  /               \ deta           /

         /  d           \ /  d             \
   + 0.1 |----- phi(eta)| |----- theta(eta)|
         \ deta         / \ deta           /

                           2\    
         /  d             \ |    
   + 0.1 |----- theta(eta)| | = 0
         \ deta           / /    
        //  d   /  d           \\
(1 - p) ||----- |----- phi(eta)||
        \\ deta \ deta         //

                 /  d   /  d             \\\     //  d   /  d   
   + 1.000000000 |----- |----- theta(eta)||| + p ||----- |-----
                 \ deta \ deta           ///     \\ deta \ deta

          \\                /  d           \
  phi(eta)|| + 0.5 R f(eta) |----- phi(eta)|
          //                \ deta         /

                 /  d   /  d             \\\    
   + 1.000000000 |----- |----- theta(eta)||| = 0
                 \ deta \ deta           ///    
f(eta)=sum(f[i](eta)*p^i,i=0..1);
                f(eta) = f[0](eta) + f[1](eta) p
g(eta)=sum(g[i](eta)*p^i,i=0..1);
                g(eta) = g[0](eta) + g[1](eta) p
theta(eta)=sum(theta[i](eta)*p^i,i=0..1);
          theta(eta) = theta[0](eta) + theta[1](eta) p
phi(eta)=sum(phi[i](eta)*p^i,i=0..1);
             phi(eta) = phi[0](eta) + phi[1](eta) p
> FORequ1;


A:=collect(expand(subs(f(eta)=f[0](eta)+f[1](eta)*p,g(eta)=g[0](eta)+g[1](eta)*p,hpm1)),p);
/      /  d            \ /  d   /  d            \\
|-1. R |----- f[1](eta)| |----- |----- f[1](eta)||
\      \ deta          / \ deta \ deta          //

                 /  d   /  d            \\\  3   /
   + R f[1](eta) |----- |----- f[1](eta)||| p  + |
                 \ deta \ deta          ///      \
      /  d            \ /  d   /  d            \\
-1. R |----- f[0](eta)| |----- |----- f[1](eta)||
      \ deta          / \ deta \ deta          //

          /  d            \ /  d   /  d            \\
   - 1. R |----- f[1](eta)| |----- |----- f[0](eta)||
          \ deta          / \ deta \ deta          //

                 /  d   /  d            \\
   + R f[0](eta) |----- |----- f[1](eta)||
                 \ deta \ deta          //

                 /  d   /  d            \\\  2   //  d   /  d   /
   + R f[1](eta) |----- |----- f[0](eta)||| p  + ||----- |----- |
                 \ deta \ deta          ///      \\ deta \ deta \

    d   /  d            \\\\       /  d            \
  ----- |----- f[1](eta)|||| - 1.0 |----- g[1](eta)|
   deta \ deta          ////       \ deta          /

          /  d            \ /  d   /  d            \\
   - 1. R |----- f[0](eta)| |----- |----- f[0](eta)||
          \ deta          / \ deta \ deta          //

                 /  d   /  d            \\\  
   + R f[0](eta) |----- |----- f[0](eta)||| p
                 \ deta \ deta          ///  

     /  d   /  d   /  d   /  d            \\\\
   + |----- |----- |----- |----- f[0](eta)||||
     \ deta \ deta \ deta \ deta          ////

         /  d            \    
   - 1.0 |----- g[0](eta)| = 0
         \ deta          /    
A1:=diff(f[0](eta),eta$4)-2*K[r]*(diff(g[0](eta),eta))=0;
A2:=diff(f[1](eta),eta$4)-2*K[r]*(diff(g[1](eta),eta))-R*(diff(f[0](eta),eta))*(diff(f[0](eta),eta$2))+R*f[0](eta)*(diff(f[0](eta),eta$2))=0;
/  d   /  d   /  d   /  d            \\\\       /  d            \   
|----- |----- |----- |----- f[0](eta)|||| - 1.0 |----- g[0](eta)| =
\ deta \ deta \ deta \ deta          ////       \ deta          /   

  0
/  d   /  d   /  d   /  d            \\\\       /  d            \
|----- |----- |----- |----- f[1](eta)|||| - 1.0 |----- g[1](eta)|
\ deta \ deta \ deta \ deta          ////       \ deta          /

       /  d            \ /  d   /  d            \\
   - R |----- f[0](eta)| |----- |----- f[0](eta)||
       \ deta          / \ deta \ deta          //

                 /  d   /  d            \\    
   + R f[0](eta) |----- |----- f[0](eta)|| = 0
                 \ deta \ deta          //    
icsA1:=f[0](0)=0,D(f[0])(0)=1,g[0](0)=0,f[0](1)=lambda,D(f[0])(1)=0,g[0](1)=0;
icsA2:=f[1](0)=0,D(f[1])(0)=0,g[1](0)=0,f[1](1)=0,D(f[1])(1)=0,g[1](1)=0;
   f[0](0) = 0, D(f[0])(0) = 1, g[0](0) = 0, f[0](1) = 0.5,

     D(f[0])(1) = 0, g[0](1) = 0
    f[1](0) = 0, D(f[1])(0) = 0, g[1](0) = 0, f[1](1) = 0,

      D(f[1])(1) = 0, g[1](1) = 0
>
FORequ2;


B:=collect(expand(subs(f(eta)=f[0](eta)+f[1](eta)*p,g(eta)=g[0](eta)+g[1](eta)*p,hpm2)),p);
/      /  d            \          
|-1. R |----- f[1](eta)| g[1](eta)
\      \ deta          /          

                 /  d            \\  3   /
   + R f[1](eta) |----- g[1](eta)|| p  + |
                 \ deta          //      \
      /  d            \          
-1. R |----- f[0](eta)| g[1](eta)
      \ deta          /          

          /  d            \          
   - 1. R |----- f[1](eta)| g[0](eta)
          \ deta          /          

                 /  d            \
   + R f[0](eta) |----- g[1](eta)|
                 \ deta          /

                 /  d            \\  2   //  d   /  d            
   + R f[1](eta) |----- g[0](eta)|| p  + ||----- |----- g[1](eta)
                 \ deta          //      \\ deta \ deta          

  \\       /  d            \        /  d            \          
  || + 1.0 |----- f[1](eta)| - 1. R |----- f[0](eta)| g[0](eta)
  //       \ deta          /        \ deta          /          

                 /  d            \\     /  d   /  d            \\
   + R f[0](eta) |----- g[0](eta)|| p + |----- |----- g[0](eta)||
                 \ deta          //     \ deta \ deta          //

         /  d            \    
   + 1.0 |----- f[0](eta)| = 0
         \ deta          /    
B1:=diff(g[0](eta),eta$2)+2*K[r]*(diff(f[0](eta),eta))=0;
B2:=diff(g[1](eta),eta$2)+2*K[r]*(diff(f[1](eta),eta))-R*(diff(f[0](eta),eta))*g[0](eta)+R*f[0](eta)*(diff(g[0](eta),eta))=0;
     /  d   /  d            \\       /  d            \    
     |----- |----- g[0](eta)|| + 1.0 |----- f[0](eta)| = 0
     \ deta \ deta          //       \ deta          /    
       /  d   /  d            \\       /  d            \
       |----- |----- g[1](eta)|| + 1.0 |----- f[1](eta)|
       \ deta \ deta          //       \ deta          /

              /  d            \          
          - R |----- f[0](eta)| g[0](eta)
              \ deta          /          

                        /  d            \    
          + R f[0](eta) |----- g[0](eta)| = 0
                        \ deta          /    
icsB1:=f[0](0)=0,D(f[0])(0)=1,g[0](0)=0,f[0](1)=lambda,D(f[0])(1)=0,g[0](1)=0;
icsB2:=f[1](0)=0,D(f[1])(0)=0,g[1](0)=0,f[1](1)=0,D(f[1])(1)=0,g[1](1)=0;
   f[0](0) = 0, D(f[0])(0) = 1, g[0](0) = 0, f[0](1) = 0.5,

     D(f[0])(1) = 0, g[0](1) = 0
    f[1](0) = 0, D(f[1])(0) = 0, g[1](0) = 0, f[1](1) = 0,

      D(f[1])(1) = 0, g[1](1) = 0
> FORequ3;


C:=collect(expand(subs(theta(eta)=theta[0](eta)+theta[1](eta)*p,phi(eta)=phi[0](eta)+phi[1](eta)*p,f(eta)=f[0](eta)+f[1](eta)*p,hpm3)),p);
 /                                     
 |                /  d                \
 |10. R f[1](eta) |----- theta[1](eta)|
 \                \ deta              /

          /  d              \ /  d                \
    + 0.1 |----- phi[1](eta)| |----- theta[1](eta)|
          \ deta            / \ deta              /

                               2\                              
          /  d                \ |  3   /                /  d   
    + 0.1 |----- theta[1](eta)| | p  + |10. R f[0](eta) |-----
          \ deta              / /      \                \ deta

                \                   /  d                \
   theta[1](eta)| + 10. R f[1](eta) |----- theta[0](eta)|
                /                   \ deta              /

          /  d              \ /  d                \
    + 0.1 |----- phi[0](eta)| |----- theta[1](eta)|
          \ deta            / \ deta              /

          /  d              \ /  d                \
    + 0.1 |----- phi[1](eta)| |----- theta[0](eta)|
          \ deta            / \ deta              /

                                                            /
          /  d                \ /  d                \\  2   |/
    + 0.2 |----- theta[0](eta)| |----- theta[1](eta)|| p  + ||
          \ deta              / \ deta              //      \\

     d   /  d                \\
   ----- |----- theta[1](eta)||
    deta \ deta              //

                      /  d                \
    + 10. R f[0](eta) |----- theta[0](eta)|
                      \ deta              /

          /  d              \ /  d                \
    + 0.1 |----- phi[0](eta)| |----- theta[0](eta)|
          \ deta            / \ deta              /

                               2\  
          /  d                \ |  
    + 0.1 |----- theta[0](eta)| | p
          \ deta              / /  

      /  d   /  d                \\    
    + |----- |----- theta[0](eta)|| = 0
      \ deta \ deta              //    
C1:=diff(theta[0](eta),eta$2)=0;
C2:=diff(theta[1](eta), eta, eta)+Pr*R*f[0](eta)*(diff(theta[0](eta), eta))+Nb*(diff(phi[0](eta), eta))*(diff(theta[0](eta), eta))+Nt*(diff(theta[0](eta), eta))^2=0;
                  d   /  d                \    
                ----- |----- theta[0](eta)| = 0
                 deta \ deta              /    
       /  d   /  d                \\
       |----- |----- theta[1](eta)||
       \ deta \ deta              //

                           /  d                \
          + 10 R f[0](eta) |----- theta[0](eta)|
                           \ deta              /

                /  d              \ /  d                \
          + 0.1 |----- phi[0](eta)| |----- theta[0](eta)|
                \ deta            / \ deta              /

                                     2    
                /  d                \     
          + 0.1 |----- theta[0](eta)|  = 0
                \ deta              /     
icsC1:=theta[0](0)=1,theta[0](1)=0;
icsC2:=theta[1](0)=0,theta[1](1)=0,phi[0](0)=0,phi[0](1)=0;
                theta[0](0) = 1, theta[0](1) = 0
 theta[1](0) = 0, theta[1](1) = 0, phi[0](0) = 0, phi[0](1) = 0
> FORequ4;


E:=collect(expand(subs(theta(eta)=theta[0](eta)+theta[1](eta)*p,phi(eta)=phi[0](eta)+phi[1](eta)*p,f(eta)=f[0](eta)+f[1](eta)*p,hpm4)),p);
                 3 /  d              \   /                /  d   
0.5 R f[1](eta) p  |----- phi[1](eta)| + |0.5 R f[0](eta) |-----
                   \ deta            /   \                \ deta

             \                   /  d              \\  2   //
  phi[1](eta)| + 0.5 R f[1](eta) |----- phi[0](eta)|| p  + ||
             /                   \ deta            //      \\

    d   /  d              \\
  ----- |----- phi[1](eta)||
   deta \ deta            //

                 /  d   /  d                \\
   + 1.000000000 |----- |----- theta[1](eta)||
                 \ deta \ deta              //

                     /  d              \\  
   + 0.5 R f[0](eta) |----- phi[0](eta)|| p
                     \ deta            //  

     /  d   /  d              \\
   + |----- |----- phi[0](eta)||
     \ deta \ deta            //

                 /  d   /  d                \\    
   + 1.000000000 |----- |----- theta[0](eta)|| = 0
                 \ deta \ deta              //    
E1:=diff(phi[0](eta),eta$2)+Nt*(diff(theta[0](eta),eta$2))/Nb=0;
E2:=diff(phi[1](eta),eta$2)+Nt*(diff(theta[1](eta),eta$2))/Nb+R*Sc*f[0](eta)*(diff(phi[0](eta),eta))=0;
       /  d   /  d              \\
       |----- |----- phi[0](eta)||
       \ deta \ deta            //

                        /  d   /  d                \\    
          + 1.000000000 |----- |----- theta[0](eta)|| = 0
                        \ deta \ deta              //    
         /  d   /  d              \\
         |----- |----- phi[1](eta)||
         \ deta \ deta            //

                          /  d   /  d                \\
            + 1.000000000 |----- |----- theta[1](eta)||
                          \ deta \ deta              //

                              /  d              \    
            + 0.5 R f[0](eta) |----- phi[0](eta)| = 0
                              \ deta            /    
icsE1:=theta[0](0)=1,theta[0](1)=0,phi[0](0)=1,phi[0](1)=0;
icsE2:=theta[1](0)=0,theta[1](1)=0,phi[1](0)=0,phi[1](1)=0;
 theta[0](0) = 1, theta[0](1) = 0, phi[0](0) = 1, phi[0](1) = 0
 theta[1](0) = 0, theta[1](1) = 0, phi[1](0) = 0, phi[1](1) = 0
       
theta[0](eta) = -(152675527/100000000)*eta+1;
                                152675527        
              theta[0](eta) = - --------- eta + 1
                                100000000        
U:=f[1](eta)=0;
                         f[1](eta) = 0
Dsolve(A1,B1,icsA1,icsB1);
                  Dsolve(A1, B1, icsA1, icsB1)


sys:={ diff(g[0](eta), eta, eta)+1.0*(diff(f[0](eta), eta)) = 0, diff(f[0](eta), eta, eta, eta, eta)-1.0*(diff(g[0](eta), eta)) = 0};
    //  d   /  d   /  d   /  d            \\\\
   { |----- |----- |----- |----- f[0](eta)||||
    \\ deta \ deta \ deta \ deta          ////

            /  d            \      
      - 1.0 |----- g[0](eta)| = 0,
            \ deta          /      

     /  d   /  d            \\       /  d            \    \
     |----- |----- g[0](eta)|| + 1.0 |----- f[0](eta)| = 0 }
     \ deta \ deta          //       \ deta          /    /
IC_1:={ f[0](0) = 0, (D(f[0]))(0) = 1, g[0](0) = 0, f[0](1) = .5, (D(f[0]))(1) = 0, g[0](1) = 0,f[0](0) = 0, (D(f[0]))(0) = 1, g[0](0) = 0, f[0](1) = .5, (D(f[0]))(1) = 0, g[0](1) = 0};
    {f[0](0) = 0, f[0](1) = 0.5, g[0](0) = 0, g[0](1) = 0,

      D(f[0])(0) = 1, D(f[0])(1) = 0}
ans1 := combine(dsolve(sys union IC_1,{f[0](eta),g[0](eta)}),trig);
Error, (in dsolve) expecting an ODE or a set or list of ODEs. Received `union`(IC_1, sys)
>

     Example of the equidistant surface at a distance of 0.25 to the surface
x3
-0.1 * (sin (4 * x1) + sin (3 * x2 + x3) + sin (2 * x2)) = 0
Constructed on the basis of universal parameterization of surfaces.

equidistant_surface.mw 


Hi. Is there a maple function which can interpolate values from a simple table:

given (x,y) compute z value

eg z(0.5,0.5)=1.5

x:=[0,1,2];y:=[0,1,2]

array:=[0,2,4;1,3,5;2,4,6] #probably the wrong input, but you get the idea

ArrayInterpolation?

there is a method in vba:

http://www.tushar-mehta.com/excel/newsgroups/interpolation/#Two_dimensional_interpolation_

Another_way_to_calculate_the_definite_integral.mw

ptin the file I upload is a complicated expression containing θ and r. Will the accuracy of the result be affected if I use the second method in the file to calculate the definite integral?

 

Hello. I have an inequality and I need to prove or negate if it is true or false. This inequality has 8 variables. I simplify it and try to see if it is ture or false. I tried "test relation" in maple and it seems I can't say it is always true or false. For some values of the variables it is true and for some others its false. Is there a method I can show if this inequlity is hold under some assumptions? I mean I want to keep some variables as constant and prove it up to a point. My inequlity is below. Thank you for the help in advance.


(P[A]*(p-w)/(1-P[A])-c)*H[A]+(w-P[A]*(p-w)/(1-P[A]))*P[A]*H[A]+w[u]*P[B]*(1-P[A])*H[B] < (P[B]*(p-w)/(1-P[B])-c)*H[B]+(w-P[B]*(p-w)/(1-P[B]))*P[B]*H[B]+w[u]*P[A]*(1-P[B])*H[B]

And this is how it looks on maple:

Hi, I am completely new to Maple, and I need to use it to optimize my equations in order to make my PLC codes more compressed. I am calculating forward kinematics with the Denavit-Hartenberg method and as such I get long expressions. After a lot of google'ing and frustration, I thought I'd ask here in the hope that one of you might be able to assist me.

I have the following equations;

X := L10*cos(q5) - L16*(sin(q10)*(sin(q5)*sin(q8) - cos(q8)*(cos(q5)*cos(q6)*cos(q7) - cos(q5)*sin(q6)*sin(q7))) - cos(q10)*(sin(q9)*(cos(q8)*sin(q5) + sin(q8)*(cos(q5)*cos(q6)*cos(q7) - cos(q5)*sin(q6)*sin(q7))) + cos(q9)*(cos(q5)*cos(q6)*sin(q7) + cos(q5)*cos(q7)*sin(q6)))) - d2*(cos(q10)*(sin(q5)*sin(q8) - cos(q8)*(cos(q5)*cos(q6)*cos(q7) - cos(q5)*sin(q6)*sin(q7))) + sin(q10)*(sin(q9)*(cos(q8)*sin(q5) + sin(q8)*(cos(q5)*cos(q6)*cos(q7) - cos(q5)*sin(q6)*sin(q7))) + cos(q9)*(cos(q5)*cos(q6)*sin(q7) + cos(q5)*cos(q7)*sin(q6)))) + L15*(sin(q9)*(cos(q8)*sin(q5) + sin(q8)*(cos(q5)*cos(q6)*cos(q7) - cos(q5)*sin(q6)*sin(q7))) + cos(q9)*(cos(q5)*cos(q6)*sin(q7) + cos(q5)*cos(q7)*sin(q6))) - L11*cos(q5)*sin(q6) + d1*cos(q5)*cos(q6) - L13*sin(q5)*sin(q8) + L14*cos(q9)*(cos(q8)*sin(q5) + sin(q8)*(cos(q5)*cos(q6)*cos(q7) - cos(q5)*sin(q6)*sin(q7))) + L13*cos(q8)*(cos(q5)*cos(q6)*cos(q7) - cos(q5)*sin(q6)*sin(q7)) - L14*sin(q9)*(cos(q5)*cos(q6)*sin(q7) + cos(q5)*cos(q7)*sin(q6)) + L12*cos(q5)*cos(q6)*cos(q7) - L12*cos(q5)*sin(q6)*sin(q7);

Y := L10*sin(q5) - L9 + L16*(sin(q10)*(cos(q5)*sin(q8) - cos(q8)*(sin(q5)*sin(q6)*sin(q7) - cos(q6)*cos(q7)*sin(q5))) - cos(q10)*(sin(q9)*(cos(q5)*cos(q8) + sin(q8)*(sin(q5)*sin(q6)*sin(q7) - cos(q6)*cos(q7)*sin(q5))) - cos(q9)*(cos(q6)*sin(q5)*sin(q7) + cos(q7)*sin(q5)*sin(q6)))) + d2*(cos(q10)*(cos(q5)*sin(q8) - cos(q8)*(sin(q5)*sin(q6)*sin(q7) - cos(q6)*cos(q7)*sin(q5))) + sin(q10)*(sin(q9)*(cos(q5)*cos(q8) + sin(q8)*(sin(q5)*sin(q6)*sin(q7) - cos(q6)*cos(q7)*sin(q5))) - cos(q9)*(cos(q6)*sin(q5)*sin(q7) + cos(q7)*sin(q5)*sin(q6)))) - L15*(sin(q9)*(cos(q5)*cos(q8) + sin(q8)*(sin(q5)*sin(q6)*sin(q7) - cos(q6)*cos(q7)*sin(q5))) - cos(q9)*(cos(q6)*sin(q5)*sin(q7) + cos(q7)*sin(q5)*sin(q6))) + L13*cos(q5)*sin(q8) - L11*sin(q5)*sin(q6) + d1*cos(q6)*sin(q5) - L14*cos(q9)*(cos(q5)*cos(q8) + sin(q8)*(sin(q5)*sin(q6)*sin(q7) - cos(q6)*cos(q7)*sin(q5))) - L13*cos(q8)*(sin(q5)*sin(q6)*sin(q7) - cos(q6)*cos(q7)*sin(q5)) - L14*sin(q9)*(cos(q6)*sin(q5)*sin(q7) + cos(q7)*sin(q5)*sin(q6)) + L12*cos(q6)*cos(q7)*sin(q5) - L12*sin(q5)*sin(q6)*sin(q7);

Z := L15*(cos(q9)*(cos(q6)*cos(q7) - sin(q6)*sin(q7)) - sin(q8)*sin(q9)*(cos(q6)*sin(q7) + cos(q7)*sin(q6))) - L11*cos(q6) - L8 - d1*sin(q6) + L16*(cos(q10)*(cos(q9)*(cos(q6)*cos(q7) - sin(q6)*sin(q7)) - sin(q8)*sin(q9)*(cos(q6)*sin(q7) + cos(q7)*sin(q6))) - cos(q8)*sin(q10)*(cos(q6)*sin(q7) + cos(q7)*sin(q6))) - d2*(sin(q10)*(cos(q9)*(cos(q6)*cos(q7) - sin(q6)*sin(q7)) - sin(q8)*sin(q9)*(cos(q6)*sin(q7) + cos(q7)*sin(q6))) + cos(q8)*cos(q10)*(cos(q6)*sin(q7) + cos(q7)*sin(q6))) - L13*cos(q8)*(cos(q6)*sin(q7) + cos(q7)*sin(q6)) - L14*sin(q9)*(cos(q6)*cos(q7) - sin(q6)*sin(q7)) - L12*cos(q6)*sin(q7) - L12*cos(q7)*sin(q6) - L14*cos(q9)*sin(q8)*(cos(q6)*sin(q7) + cos(q7)*sin(q6));

 

I need to optimize these equations, but still keep them separate. I would like to use mutual expressions for the calculations within, but still as I said keep the outputs of X, Y and Z separate.

This is MATLAB code.

 

Thanks in advance for any help.

hi 

 

i solved my equation as follow , i want to know a compelet describtion that which method of pde/numeric methods is using .

 

thanks 


 

 

 

 

Hi all!

 

I do a small calculation and get a system of 6
nonlinear equations.
And "n" is the degree of the equation is float.

Here are the calculations that lead to the system.

 

restart;
 with(DirectSearch):
 B:=1: 
 q:=1: 
 l:=1: 
 n:=4.7:
 V:=0.05:
 N:=1200:
 
 
 kappa:=Vector(N+1,[]):
 theta:=Vector(N+1,[]):
 u:=Vector(N,[]):
 M:=Vector(N,[]):
 Z:=Vector(N,[]):
 
 M_F:=q*(6*l*(z-l)-z^2/2):
 M_1:=piecewise((z<l), l-z, 0):
 M_2:=piecewise((z<2*l), 2*l-z, 0):
 M_3:=piecewise((z<3*l), 3*l-z, 0):
 M_4:=piecewise((z<4*l), 4*l-z, 0):
 M_5:=piecewise((z<5*l), 5*l-z, 0):
 M_6:=6*l-z:
 M_finish:=(X_1,X_2,X_3,X_4,X_5,X_6,z)->M_1*X_1+M_2*X_2+M_3*X_3+M_4*X_4+M_5*X_5+M_6*X_6+M_F:
 
 
 kappa_old:=0:
 theta_old:=0:
 u_old:=0:
 M_old:=0:
 
 
 step:=6*l/N:
 u[1]:=0:
 kappa[1]:=0:
 theta[1]:=0:
 
 
 
 
 for i from 2 to N do
 
 z:=i*step:
 kappa_new:=kappa_old+B/V*(M_finish(X_1,X_2,X_3,X_4,X_5,X_6,z))^n*step:
 
 theta_new:=theta_old+1/2*(kappa_old+kappa_new)*step:
 
 u_new:=u_old+1/2*(theta_old+theta_new)*step:
 
 Z[i]:=z:
 kappa[i]:=kappa_new:
 theta[i]:=theta_new:
 u[i]:=u_new:
 kappa_old:=kappa_new:
 theta_old:=theta_new:
 u_old:=u_new:
 
 end do:
 
 So,my system:


 u[N/6]=0;
 u[N/3]=0;
 u[N/2]=0;
 u[2*N/3]=0;
 u[5*N/6]=0;
 u[N]=0;

 

I want to ask advice on how to solve the system.
I wanted to use Newton's method, but I don't know the initial values X_1..X_6.

Tried to set the values X_1..X_6 and to minimize the functional
Fl:=(X_1,X_2,X_3,X_4,X_5,X_6)->(u[N/6])^2+(u[N/3])^2+(u[N/2])^2+(u[2*N/3])^2+(u[5*N/6])^2+(u[N])^2:

with the help with(DirectSearch):
GlobalOptima(Fl);
But I don't know what to do next

Please, advise me how to solve the system! I would be grateful for examples!

 

I am a problem with solve differential equation, please help me: THANKS 

g := (y^2-1)^2; I4 := int(g^4, y = -1 .. 1); I5 := 2*(int(g^3*(diff(g, y, y)), y = -1 .. 1)); I6 := int(g^3*(diff(g, y, y, y, y)), y = -1 .. 1); with(Student[Calculus1]); I10 := ApproximateInt(6/(1-f(x)*g)^2, y = -1 .. 1, method = simpson);

dsys3 := {I4*f(x)^2*(diff(f(x), x, x, x, x))+I5*f(x)^2*(diff(f(x), x, x))+I6*f(x)^3 = I10, f(-1) = 0, f(1) = 0, ((D@@1)(f))(-1) = 0, ((D@@1)(f))(1) = 0};

dsol5 := dsolve(dsys3, numeric, output = array([0.]));

              Error, (in dsolve/numeric/bvp) system is singular at left endpoint, use midpoint method instead

****************FORMAT TWO ********************************************************

g := (y^2-1)^2; I4 := int(g^4, y = -1 .. 1); I5 := 2*(int(g^3*(diff(g, y, y)), y = -1 .. 1)); I6 := int(g^3*(diff(g, y, y, y, y)), y = -1 .. 1); with(Student[Calculus1]); I10 := ApproximateInt(6/(1-f(x)*g)^2, y = -1 .. 1, method = simpson);
dsys3 := {I4*f(x)^2*(diff(f(x), x, x, x, x))+I5*f(x)^2*(diff(f(x), x, x))+I6*f(x)^3 = I10, f(-1) = 0, f(1) = 0, ((D@@1)(f))(-1) = 0, ((D@@1)(f))(1) = 0};

dsol5 := dsolve(dsys3, method = bvp[midrich], output = array([0.]));
%;
                                   Error, (in dsolve) too many levels of recursion

I DONT KNOW ABOUT THIS ERROR

PLEASE HELP ME

THANKS A LOT

 

Hi every body:

how can i solve this equations(without numerical method):

eq1 := (D[1, 1](eta11))(t, a*t, a^2*t)+1.326096634*10^8*Pi^2*eta11(t, a*t, a^2*t)-3.315241586*10^7*Pi*eta21(t, a*t, a^2*t) = 0

eq2 := 2.054901810*10^13*eta21(t, a*t, a^2*t)+(D[1, 1](eta21))(t, a*t, a^2*t)-8.219607239*10^13*Pi*eta11(t, a*t, a^2*t)+4.137421500*10^8*Pi^2*eta21(t, a*t, a^2*t) = 0

eq3 := (D[1, 1](eta31))(t, a*t, a^2*t)+4.137421500*10^8*Pi^2*eta31(t, a*t, a^2*t) = 0

Dear all,

I would like to solve the Fredholm Integral equation, using numerical method.
This is my code.

there is a problem with subs, does not working here.
# Then, we obtain from (9) the coeficient A[n] and B[n].

Then I woulk like to recompute (2), and then compute (1).
# Puting x=m*h, in (1), how can we generate a linear Matrix from (1).

 

Fred.mw

Thanks

Hi.

please, I need some code about stepsize adaptative Runge Kutta method ( any order ) or other methods.

Thanks

1 2 3 Page 1 of 3