Markiyan Hirnyk

Markiyan Hirnyk

7228 Reputation

25 Badges

11 years, 334 days

MaplePrimes Activity


These are questions asked by Markiyan Hirnyk

Namely, I mean

solve({y >= 4*x^4+4*x^2*y+1/2, sqrt((1/2)*(x-y)^2-(x-y)^4) = -2*x^2+y^2}, [x, y]);
                               []

The answer (no solution) is not correct in view of 

eval({y >= 4*x^4+4*x^2*y+1/2, sqrt((1/2)*(x-y)^2-(x-y)^4) = -2*x^2+y^2}, [x = 0, y = 1/2]);
      {(1/8)*sqrt(4) = 1/4, 1/2 <= 1/2}
eval({y >= 4*x^4+4*x^2*y+1/2, sqrt((1/2)*(x-y)^2-(x-y)^4) = -2*x^2+y^2}, [x = -1, y = -3/2]);
      {(1/8)*sqrt(4) = 1/4, -3/2 <= -3/2}            

 

We have the following sequence of natural numbers
1, 2, 4, 7, 11, 16, 67, 83, 46, 73, 47, 85, 70, 20, 16, 76, 83, 55, 73, 56, 85, 79, 119, 934, 463, 389, 1009, 9028, 8237, 7357, 7567, 7688, 8899, 10021, 12035, 53056, 65071, 17093, 39109, 90232, 23249, 94273, 37291, 19316, 61435, 53461, 16481, 18508, 80629, 92657, 75679, 97708, 80831, 13861, 16885, 58916, 62041, 14083, 38099, 99142, 24259, 95303, 30421, 12466, 66485, 58531, 13651, 15698, 89719, 91867, 76889, 98938, 84061, 16121, 12235, 53296, 69311, 11473, 37489, 98552, 25669, 96733, 33851, 15916, 62035, 53111, 11221, 12298, 89309, 90487, 78499, 99578, 87691, 19771, 17885, 58966, 67081, 18173, 37279, 97372, 27479, 97573, 37681, 18776, 67885, 58981, 19091, 19198, 89299, 99407, 70609, 90718, 81821, 12931, 14035, 53156, 65251, 15373, 37469, 96592, 29689, 98813, 32011, 11146, 64235, 53371, 17461, 16598, 89689, 98827, 73019, 91168, 86251, 15401, 10585, 58636, 63821, 12973, 38059, 95222, 22399, 99463, 36641, 14806, 60985, 59051, 15241, 14398, 89489, 98647, 74839, 93998, 90091, 19162, 26345, 54517, 71701, 10874, 47959, 96133, 33329, 92494, 49591, 19757, 75955, 56122, 22331, 13489, 98599, 99758, 85969, 97129, 92351, 15502, 20725, 52877, 78001, 10264, 46379, 97543, 34759, 95924, 43141, 14317, 71525, 52702, 20911, 12089, 98209, 90478, 87599, 99769, 96991, 20162, 26296, 69457, 75692, 29854, 46090, 9263, 3829, 9484, 5051, 1708, 8275, 5933, 3601, 1270, 929, 1138, 8521, 1469, 9853, 3802, 2297, 8137, 7534, 4574, 4972, 3013, 3323, 3454, 4765, 5897, 8209, 9253, 3755, 5800, 313, 542, 475, 805, 740, 280, 316, 848, 1084, 5038, 8543, 3697, 8203, 3269, 9865, 5932, 2639, 9607, 7315, 5384, 5083, 4054, 4754, 4825, 5536, 6608, 8320, 493, 650, 313, 571, 434, 694, 757, 1019, 9364, 4903, 3359, 9799, 10246, 64469, 96715, 52039, 93296, 69511, 11869, 97085, 58354, 45661, 16931, 14239, 93520, 2819, 9463, 3931, 1676, 7045, 5692, 3251, 1810, 469, 1253, 3811, 1474, 5033, 3598, 9247, 7724, 4573, 4051, 1802, 2380, 1132, ... .
 What is the next term? Is it possible to find that with Maple? The Lagrange polynomial is not taken into account. I'd like to recall a great answer by Carl Love to a similar question.  However, the current situation seems to be different. The Predict command of Mma fails here.

 MaplePrimes member has sent you a message on MaplePrimes.

Member: faisal http://www.mapleprimes.com/users/faisal
E-Mail Address:

> restart; with(PDETools), with(plots);
> n := .3; Pr := 7; Da := 0.1e-4; Nb := .1; Nt := .1; tau := 5;
> Eq1 := (1-n)*(diff(f(x, y), `$`(y, 3)))+(1+x*cot(x))*f(x, y)*(diff(f(x, y), `$`(y, 2)))-(diff(f(x, y), y))/Da+(diff(f(x, y), y))^2+n*We*(diff(f(x, y), `$`(y, 2)))*(diff(f(x, y), `$`(y, 3)))+sin(x)*(theta(x, y)+phi(x, y))/x = x*((diff(f(x, y), y))*(diff(f(x, y), y, x))+(diff(f(x, y), `$`(y, 2)))*(diff(f(x, y), x)));
> Eq2 := (diff(theta(x, y), `$`(y, 2)))/Pr+Nt*(diff(theta(x, y), y))^2/Pr+Nb*(diff(phi(x, y), y))*(diff(theta(x, y), y))/Pr+(1+x*cot(x))*f(x, y)*(diff(theta(x, y), y)) = x*((diff(f(x, y), y))*(diff(theta(x, y), x))+(diff(theta(x, y), y))*(diff(f(x, y), x)));
> Eq3 := Nb*(diff(phi(x, y), `$`(y, 2)))/(tau*Pr)+Nt*(diff(theta(x, y), `$`(y, 2)))/(tau*Pr)+(1+x*cot(x))*f(x, y)*(diff(phi(x, y), y)) = x*((diff(f(x, y), y))*(diff(phi(x, y), x))+(diff(phi(x, y), y))*(diff(f(x, y), x)));
> ValWe := [0, 5, 10];
> bcs := {Nb*(D[2](phi))(x, 0)+Nt*(D[2](theta))(x, 0) = 0, f(0, y) = ((1/12)*y)^2*(6-8*((1/12)*y)+3*((1/12)*y)^2), f(x, 0) = 0, phi(0, y) = -.5*y, phi(x, 12) = 0, theta(0, y) = (1-(1/12)*y)^2, theta(x, 0) = 1, theta(x, 12) = 0, (D[2](f))(x, 0) = Da^(1/2)*(D[2, 2](f))(x, 0)+Da*(D[2, 2, 2](f))(x, 0), (D[2](f))(x, 12) = 0};
> pdsys := {Eq1, Eq2, Eq3}; for i to 3 do We := ValWe[i]; ans[i] := pdsolve(pdsys, bcs, numeric) end do;
> p1 := ans[1]:-plot(theta(x, y), x = 1, color = blue); p2 := ans[2]:-plot(theta(x, y), x = 1, color = green); p3 := ans[3]:-plot(theta(x, y), x = 1, color = black);
> plots[display]({p1, p2, p3});

Of course, with Maple.

See Wiki and the description  in flame_draves.pdf for info and an example below.

1 2 3 4 5 6 7 Last Page 1 of 35