## 9 Badges

4 years, 286 days
i would also not like to ask, but if not ask, what should i do?

## is it possible to express rational numbe...

Maple 2015

is it possible to express rational number into fraction in terms of power of 2

input

2.142857143

output

(2^3+2^2+2+1)/(1+2+2^2)

## how to find p and q in this case...

Maple 12

1.
tanh(1-x) = sum(p(ii)*x^q(ii), ii=0..infinity) or product(p*x^q(ii), ii=0..infinity) ?
2.
tanh(1-x)*1/(1-x) = sum(p(ii)*x^q(ii), ii=0..infinity) or product(p*x^q(ii), ii=0..infinity) ?
3.
tanh(x) = sum(p(ii)*x^q(ii), ii=0..infinity) or product(p*x^q(ii), ii=0..infinity) ?

Remark: it may not be possible to use diff to find p(ii)

update

series(tanh(1-x), x=0);
with(OrthogonalSeries):
Coefficients(series(1/(1-x), x=0));
coeffs(series(tanh(1-x), x=0));
coeffs(series(tanh(1-x), x=0),x);
Error, invalid arguments to coeffs;

and is it possible to find q(ii) only if assume p(ii) all are one?

## how to plot this?...

Maple 12

ode1a := diff(y1(t), t) = round(rhs(odeparm1[1][1]))*y1(t)+round(rhs(odeparm1[1][2]))*y2(t)+round(rhs(odeparm1[1][3]))*y3(t);
ode2a := diff(y2(t), t) = round(rhs(odeparm1[1][4]))*y1(t)+round(rhs(odeparm1[1][5]))*y2(t)+round(rhs(odeparm1[1][6]))*y3(t);
ode3a := diff(y3(t), t) = round(rhs(odeparm1[1][7]))*y1(t)+round(rhs(odeparm1[1][8]))*y2(t)+round(rhs(odeparm1[1][9]))*y3(t);
try
ode1a := diff(y1(t), t) = rhs(odeparm1[1][1])*y1(t)+rhs(odeparm1[1][2])*y2(t)+rhs(odeparm1[1][3])*y3(t);
ode2a := diff(y2(t), t) = rhs(odeparm1[1][4])*y1(t)+rhs(odeparm1[1][5])*y2(t)+rhs(odeparm1[1][6])*y3(t);
ode3a := diff(y3(t), t) = rhs(odeparm1[1][7])*y1(t)+rhs(odeparm1[1][8])*y2(t)+rhs(odeparm1[1][9])*y3(t);
sys := DiffEquation([ode1a, ode2a, ode3a], inputvariable = [y1(t)], outputvariable = [y2(t), y3(t)]);
sysz := ToDiscrete(sys, ts); in_t := Sine(1, 1, 0, 0);
sol := Simulate(sys, [in_t]);
try
p1 := plots[odeplot](sol, [[t, y2(t)]], t = 0 .. t_sim, numpoints = 200, color = red);
print("succeed 1 2", i)
catch:
print("error draw at ", i)
end try;
try
p1 := plots[odeplot](sol, [[t, y3(t)]], t = 0 .. t_sim, numpoints = 200, color = red);
print("succeed 1 3", i)
catch:
print("error draw at ", i)
end try
catch: print("error at ", i);
print(lastexception);
print(ode1a);
print(ode2a);
print(ode3a);
end try;
try
ode1a := diff(y1(t), t) = rhs(odeparm1[1][1])*y1(t)+rhs(odeparm1[1][2])*y2(t)+rhs(odeparm1[1][3])*y3(t);
ode2a := diff(y2(t), t) = rhs(odeparm1[1][4])*y1(t)+rhs(odeparm1[1][5])*y2(t)+rhs(odeparm1[1][6])*y3(t);
ode3a := diff(y3(t), t) = rhs(odeparm1[1][7])*y1(t)+rhs(odeparm1[1][8])*y2(t)+rhs(odeparm1[1][9])*y3(t);
sys := DiffEquation([ode1a, ode2a, ode3a], inputvariable = [y2(t)], outputvariable = [y1(t), y3(t)]);
sysz := ToDiscrete(sys, ts);
in_t := Sine(1, 1, 0, 0);
sol := Simulate(sys, [in_t]);
try
p1 := plots[odeplot](sol, [[t, y1(t)]], t = 0 .. t_sim, numpoints = 200, color = red);
print("succeed 2 1", i)
catch:
print("error draw at ", i)
end try;
try
p1 := plots[odeplot](sol, [[t, y3(t)]], t = 0 .. t_sim, numpoints = 200, color = red);
print("succeed 2 3", i)
catch:
print("error draw at ", i)
end try
catch:
print("error at ", i);
print(lastexception);
print(ode1a);
print(ode2a);
print(ode3a)
end try;
try
ode1a := diff(y1(t), t) = rhs(odeparm1[1][1])*y1(t)+rhs(odeparm1[1][2])*y2(t)+rhs(odeparm1[1][3])*y3(t);
ode2a := diff(y2(t), t) = rhs(odeparm1[1][4])*y1(t)+rhs(odeparm1[1][5])*y2(t)+rhs(odeparm1[1][6])*y3(t);
ode3a := diff(y3(t), t) = rhs(odeparm1[1][7])*y1(t)+rhs(odeparm1[1][8])*y2(t)+rhs(odeparm1[1][9])*y3(t);
sys := DiffEquation([ode1a, ode2a, ode3a], inputvariable = [y3(t)], outputvariable = [y1(t), y2(t)]);
sysz := ToDiscrete(sys, ts);
in_t := Sine(1, 1, 0, 0);
sol := Simulate(sys, [in_t]);
try
p1 := plots[odeplot](sol, [[t, y1(t)]], t = 0 .. t_sim, numpoints = 200, color = red);
print("succeed 3 1", i)
catch:
print("error draw at ", i)
end try;
try
p1 := plots[odeplot](sol, [[t, y2(t)]], t = 0 .. t_sim, numpoints = 200, color = red);
print("succeed 3 2", i)
catch:
print("error draw at ", i)
end try
catch:
print("error at ", i);
print(lastexception);
print(ode1a);
print(ode2a);
print(ode3a)
end try

diff(y1(t), t) = 1.052936200*10^5*y1(t)+70106.19000*y2(t)+35169.00000*y3(t)
diff(y2(t), t) = 70106.19000*y1(t)+71031.61000*y2(t)+35511.00000*y3(t)
diff(y3(t), t) = 35169.00000*y1(t)+35511.00000*y2(t)+36100.00000*y3(t)
"the DEs contain functions with undefined values (probably caused by a discontinuity in the input that was differentiated). As a result, the numerical solution cannot be calculated. The DE system is: %1\"",[(&DifferentialD;)/(&DifferentialD;t) y1(t)=1.052936200 10^5 y1(t)+70106.19000 y2(t)+35169.00000 ({[[0,t<0],[sin(t),otherwise]]),(&DifferentialD;)/(&DifferentialD;t) y2(t)=70106.19000 y1(t)+71031.61000 y2(t)+35511.00000 ({[[0,t<0],[sin(t),otherwise]]),{[[0,t<0],[undefined,t=0],[cos(t),0<t]]=35169.00000 y1(t)+35511.00000 y2(t)+36100.00000 ({[[0,t<0],[sin(t),otherwise]]),y2(0)=0,y1(0)=0]

it has error when plot

## Error, (in Vector) dimension parameter i...

Maple 2015

ode1a := diff(y1(tt),tt) = round(rhs(odeparm1[1][1]))*y1(tt) + round(rhs(odeparm1[1][2]))*y2(tt) + round(rhs(odeparm1[1][3]))*y3(tt);
ode2a := diff(y2(tt),tt) = round(rhs(odeparm1[1][4]))*y1(tt) + round(rhs(odeparm1[1][5]))*y2(tt) + round(rhs(odeparm1[1][6]))*y3(tt);
ode3a := diff(y3(tt),tt) = round(rhs(odeparm1[1][7]))*y1(tt) + round(rhs(odeparm1[1][8]))*y2(tt) + round(rhs(odeparm1[1][9]))*y3(tt);
sys := subs(y3(tt)=1,[ode1a,ode2a]);
print(DEplot(sys, [y1(tt), y2(tt)], tt = 0 .. 16, y1 = -16 .. 16, y2 = -16 .. 16, color = magnitude, title = `Stable Limit Cycles`, arrows = curve, dirfield = 800, axes = none));

how to mirror the vector field graph mathematically?

mirror the graph about x=0 this line,

so that the graph looked flip

i find curl can do, but how to do ?

restart;
with(VectorCalculus):
SetCoordinates('cartesian'[x(t), y(t), z(t)]);
Curl((x(t),y(t),z(t)),(Diff(x(t),t) - a11*x(t) - a12*y(t) - a13*z(t),Diff(x(t),t) - a21*x(t) - a22*y(t) - a23*z(t),Diff(x(t),t) - a31*x(t) - a32*y(t) - a33*z(t)));
Error, (in VectorCalculus:-SetCoordinates) coordinate system `cartesian[x(t), y(t), z(t)]` does not exist
Error, (in Vector) dimension parameter is required for this form of initializer

## DEtools/DEplot/CheckDE) derivatives must...

subs can not make diff(1, t) = 0

sys := simplify(subs(diff(1,t)=0,subs(c(t)=1,[ode1a,ode3a])));
sys := [diff(a(t), t) = 1.342398800*10^5*a(t)+89591*b(t)+44647, 44647*a(t)+44902*b(t)+44859];

DEplot(sys, [a(t), b(t)], t = 0 .. 16, a = -16 .. 16, b = -16 .. 16, color = magnitude, title = `Stable Limit Cycles`, arrows = curve, dirfield = 800, axes = none);
Error, (in DEtools/DEplot/CheckDE) derivatives must be given explicitly

why can not plot?

 1 2 3 4 5 6 7 Last Page 1 of 114
﻿