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Introduction

Differentiation matrices are a class of band matrices that use meth-
ods of linear algebra to approximate derivatives. These matrices can
be derived a number of different ways. We will derive a second order
differentiation matrix from the Taylor polynomial and a fourth order
differentiation matrix from the Lagrange interpolating polynomial.




The Problem

In many real life situations we don’t have a simple function to differ-
entiate. We may have a set of discrete points and we need to plot their
derivative. Differentiation matrices are the perfect tool for this job.
They take that set of discrete points and approximate the derivative
as another set of discrete points.
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Taylor’s Theorem

The standard Taylor series has the following form.
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For convenience we will substitute a + h for  and then substitute
for a.
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The Second Order Difference Equation
from Taylor’s Theorem

The standard second-order finite difference approximation can be
derived by considering the Taylor expansions of u(x; 1) and u(x;_1).
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Using the Taylor series:
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Difference Equation

Subtracting one equation from the other, and eliminating higher or-
der terms, we get:

w(x; + h) — u(z; — h) = 2u'(z;)h
w(z; + h) —u(x; — h)
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However, x; .1 = x; + h and x;_y = x; — h.
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How the Difference Equation Works

The difference equation approximates the derivative at a point
(x;, u(x;)) using the slope of the line that passes through the point
before it (x;_1,u(x;_1)) and the point after it (1, u(x; 1))

u(i1) — u(T; 1)

u' () =

2h




Assuming Periodicity

Before we can go any further we must assume that the function we
are evaluating is periodic. We know that in most cassis it is not but it

is going to be necessary so that we can set up our system of equations.
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System of Equations

Our previous result:

u(ip1) — u(wi 1)
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Replacing u'(z;) with w;, u(x; 1) with u;q, and w(z; ;) with u;_;
gives us the standard second order difference equation.

Wi — Uiprr — Ui
' 2h
We will now use this difference equation to set up a system of equa-
tions that represent the derivative of the function.

To set up the system of equations we will set : =1,2, 3, ..., n




System of Equations

Ug — Up
Y=
Uz — Uy
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Matrix Form
The system takes the form

w = Du,
where

0 /2 0 0 0 0 —1/2
—-1/2 0 1/2 0 0 0 0

0 —-1/2 0 1/2 0 0 0

D = : :

0 0 0 0 0 1/2 0

0 0 0 0 —1/2 0 1/2
| 1/2 0 0 O 0o —-1/2 0 |




Example

Lets look at an example using the following set of 8 discrete points

(2,5),(4,15),(6,35),(8,65),(10,100),(12,145),(14,195), and (16,255).
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W S0 12 0 ... 0 -=1/21 |15
ws ~1/2 0 1/2... 0 0 35
wel 1] 0 =1/2 0 ... 0 0 65
ws| 9| : P : 100
we 0 0 0 ... 0 1/2| 145
w- 12 0 0 ...-1/2 0 | [195
ws 255




Answer

The vector w contains the y values of the derivative approximation.
The x values are the same as the x values of the points we wanted to
take a derivative of.

w1 [ —60
W9 7.5
Wy 16
W o 20




Graph
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Fourth Order Differentiation Matrix
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Lagrange Interpolating Polynomial




Fitting the Curve
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Fourth Order Polynomial
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Fourth Order Differentiation Equation
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System of Equations
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Fourth Order Differentiation Matrix
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Differentiation Using the Fourth Order
Matrix
(2,2.5), (4,.5), (6,.75), (8,2.7), (10, .6), (12, .6), (14,2.7), (16, .75)

22/26

wy i 1/12 —2/3] [25
ws . —1/12 /12| | °

=5 - - 6
0, ’ o230 6
w0 ~1/12 1/12 - X
| ws | 2/3 —1/12 . 1|75




Plotting Data Points

sinx sinx

y=-e and  y' = (cosz)e




Accuracy Increases with an Increase of
Points




Conclusion
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