with(Student[Calculus1]);

[AntiderivativePlot, AntiderivativeTutor, ApproximateInt, ApproximateIntTutor, ArcLength, ArcLengthTutor, Asymptotes, Clear, CriticalPoints, CurveAnalysisTutor, DerivativePlot, DerivativeTutor, DiffTutor, ExtremePoints, FunctionAverage, FunctionAverageTutor, FunctionChart, FunctionPlot, GetMessage, GetNumProblems, GetProblem, Hint, InflectionPoints, IntTutor, Integrand, InversePlot, InverseTutor, LimitTutor, MeanValueTheorem, MeanValueTheoremTutor, NewtonQuotient, NewtonsMethod, *NewtonsMethodTutor*, *PointInterpolation*, *RiemannSum*, *RollesTheorem*, *Roots*, *Rule*, *Show*, ShowIncomplete, ShowSolution, ShowSteps, Summand, SurfaceOfRevolution, SurfaceOfRevolutionTutor, Tangent, TangentSecantTutor, TangentTutor, TaylorApproximation, TaylorApproximationTutor, Understand, Undo, VolumeOfRevolution, *VolumeOfRevolutionTutor*, *WhatProblem*]

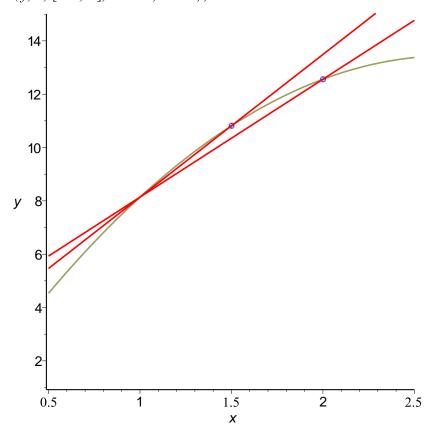
Chapter 2 Section 1 Problem 6(modified) If a rock is thrown upward on the planet Mars with a velocity of 10 m/s, its height in meters t seconds later is given by $f(t) = 10t - 1.86t^2$.

(a) Find the average velocity over the given time intervals: (i) [1,2], (ii) [1,1.5], (iii) [1,1.1], (iv) [1, 1.01], (v) [1,1.001]

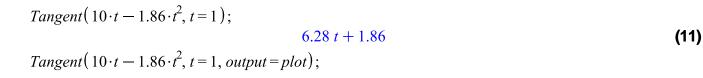
GetSlope := $\operatorname{proc}(x1, y1, x2, y2)$ evalf $\left(\frac{(y2 - y1)}{x2 - x1}\right)$ end proc;	
proc(x1, y1, x2, y2) evalf $((y2 - y1) / (x2 - x1))$ er	nd proc (2)
$f := t \rightarrow 10 \cdot t - 1.86 t^2;$	
$t \rightarrow 10 \ t + (-1) \cdot 1.86 \ t^2$	(3)
GetSlope(1, f(1), 2, f(2));	
4.42	(4)
GetSlope(1, f(1), 1.5, f(1.5));	
5.35000000	(5)
GetSlope(1, f(1), 1.1, f(1.1));	
6.094000000	(6)
GetSlope(1, f(1), 1.01, f(1.01));	
6.261400000	(7)
GetSlope(1, f(1), 1.001, f(1.001));	
6.278140000	(8)
(b) Estimate the instantaneous velocity when $t = 1, 6.28$	

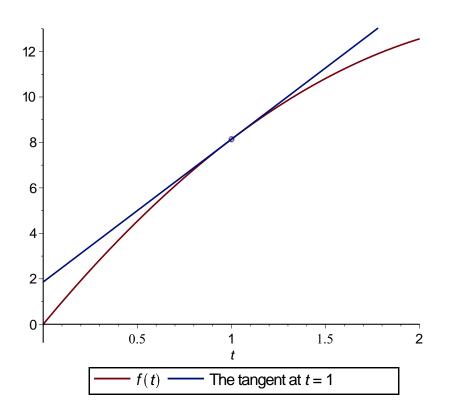
(c^*) Using the slope from part (b), find an equation of the tangent line to the curve at P(1,f(1))

f(1)

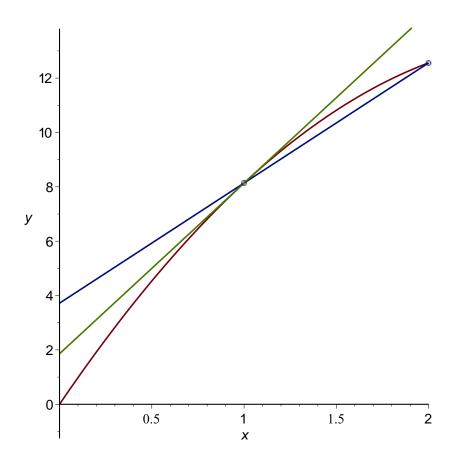

(1)

equation of tangent line is y - 8.14 = 6.28(x - 1)


(d*) Sketch the curve, two of the secant lines, and the tangent.


```
DrawSec := \mathbf{proc}(f, x1, xlist, xrange :: range, vrange :: range) \mathbf{local}(i, z, P, M, coords, sec1; M := x \rightarrow x;
P := map([M, f], xlist); coords := plot(P, xrange, style = point, color = blue, symbol = circle); i
:= z \rightarrow (GetSlope(x1, f(x1), z, f(z))) \cdot (x - x1) + f(x1); sec1 := map(i, xlist);
```

plots[display]([plot([[x1, f(x1)]], style = point, color = black, symbol = box), plot(f, xrange, yrange, color = khaki), coords, plot(sec1, x = xrange, y = yrange, color = red)]); end procproc(f, x1, xlist, xrange::range, yrange::range) (10)local i, z, P, M, coords, sec1; $<math display="block">M := x \rightarrow x;$ P := map([M, f], xlist); coords := plot(P, xrange, style = point, color = blue, symbol = circle); $i := z \rightarrow GetSlope(x1, f(x1), z, f(z)) * (x - x1) + f(x1);$ sec1 := map(i, xlist); plots[display]([plot([[x1, f(x1)]], style = point, color = black, symbol = box), plot(f, xrange, yrange, color = khaki), coords, plot(sec1, x = xrange, y = yrange, color = red)])end proc


DrawSec(*f*, 1, [1.5, 2], .5..2.5, 1..15);

At t = 1, for the function $f(t) = 10 t \text{K} 1.86 t^2$, a graph of f(t) and a tangent line.

TangentTutor $(10 \cdot t - 1.86 \cdot t^2, t = 1);$

