
    

    

Physics Courseware Support: Mechanics
Hi
The attached worksheet is work in progress, to appear in Maple 2023 as Courseware support for 
Mechanics in the context of Physics courses. Everything below also works in Maple 2022.2 with the last 
Maplesoft Physics Updates for that release..

What follows is presented as "Topic > Problem > Solution", with typical symbolic problems and how you
can solve them on a worksheet. As such, this material does not intend to compete with textbooks nor with 
teacher's notes but to be a helpful complement, as in "what can computer algebra really do to support the 
learning activity". Mainly, allow for focusing the logic and thinking while the computer takes care of the 
intricacies of the algebraic manipulations, that when computing with paper and pencil so frequently take 
mostly all of our focus.

   
The material, thus, has 70 solved problems covering all the sort-of-syllabus of hyperlinks below. The 
presentation uses notation as in textbooks and illustrates different techniques, several not present in help 
pages. It also shows why it is relevant to have a Vectors package that handles abstract vectors as well as 
projections using unit vectors, not matrix representations for them. Your feedback about everything you 
see in the worksheet - suggestions for new topics or problems, or anything else - can be useful and is 
welcome.

   
Due to the length of this material (~100 pages), out of the 70 problems, below I left open (visible) the 
Solution sections of only a few of them, illustrating different things, also new functionality e.g. the first 
and last ones. That is sufficient to have an idea of what this is about.

With the best wishes for 2023.

Explore. While learning, having success is a secondary goal: using your curiosity as a compass is 
what matters. Things can be done in many different ways, take full permission to make mistakes. 
Computer algebra can transform the algebraic computation part of physics into interesting discoveries 
and fun.

The following material assumes knowledge of how to use Maple. If you feel that is not your case, for a 
compact introduction on reproducing in Maple the computations you do with paper and pencil, see 
sections 1 to 5 of the Mini-Course: Computer Algebra for Physicists . Also, the presentation assumes 
an understanding of the subjects and the style is not that of a textbook. Instead, it focuses on 
conveniently using computer algebra to support the practice and learning process. The selection of topics
follows references [1] and [2] at the end. Maple 2023.0 includes Part I. Part II is forthcoming.

 



ix. ix. 

C. C. 

g. g. 

A. A. 

ii. ii. 

3. 3. 

iv. iv. 

viii. viii. 

B. B. 

l. l. 

m. m. 

i. i. 

a. a. 

vi. vi. 

v. v. 

f. f. 

x. x. 

e. e. 

i. i. 

c. c. 

1. 1. 

2. 2. 

iii. iii. 

vii. vii. 

h. h. 

k. k. 

j. j. 

4. 4. 

d. d. 

D. D. 

b. b. 

n. n. 

Part I

Position, velocity and acceleration in Cartesian, cylindrical and spherical coordinates

The position r t as a function of time

The velocity v t

The acceleration a t

Deriving these formulas

Velocity and acceleration in the case of 2-dimensional motion on the x, y plane

The equations of motion

A single particle

The equations of motion - vectorial form

The case of constant acceleration

Motion under gravitational force close to the Earth's surface

Motion under gravitational force not close to the Earth's surface

Circular motion

Escape velocity

Different acceleration in different regions

The equations of motion using tensor notation

Cartesian coordinates

Curvilinear coordinates

Many-particle systems

Center of mass

The equations of motion

Static: reactions of planes and tensions on cables

Lagrange equations

Motion of a pendulum

Conservation laws

Work

Conservation of the total energy of a closed system or a system in a constant external field

Conservation of the total momentum of a closed system

Conservation of angular momentum

Cyclic coordinates

Integration of the equations of motion

Motion in one dimension



xii. xii. 

t. t. 

p. p. 

r. r. 

9. 9. 

8. 8. 

xi. xi. 

(1)(1)

s. s. 

q. q. 

x. x. 

u. u. 

v. v. 

7. 7. 

y. y. 

5. 5. 

6. 6. 

w. w. 

o. o. 

10. 10. 

Reduced mass

The two-body problem

A many-body problem

Motion in a central field

Kepler's problem

Small Oscillations

Free oscillations in one dimension

Forced oscillations

Oscillations of systems with many degrees of freedom

Rigid-body motion

Angular velocity

Inertia tensor

Angular momentum of a rigid body

The equations of motion of a rigid body

Non-inertial coordinate systems

Coriolis force and centripetal force

Part II (forthcoming)

The Hamiltonian and equations of motion; Poisson brackets

Canonical transformations

The Hamilton-Jacobi equation

Position, velocity and acceleration in Cartesian, cylindrical and 
spherical coordinates

Load the Physics:-Vectors package

with Physics:-Vectors
&x, ` `, `.`, Assume, ChangeBasis, ChangeCoordinates, CompactDisplay, Component, Curl,

DirectionalDiff, Divergence, Gradient, Identify, Laplacian, , Norm, ParametrizeCurve,
ParametrizeSurface, ParametrizeVolume, Setup, Simplify, `^`, diff, int

Depending on the geometry of a problem, it can be convenient to work with either Cartesian or curvilinear 
coordinates. In an arbitrary reference system, the position in Cartesian coordinates and the basis of unitary 
vectors i , j , k is given by



(11)(11)

(6)(6)

• • 

(10)(10)

(5)(5)

(8)(8)

o. o. 

(2)(2)

(9)(9)

(12)(12)

(3)(3)

(4)(4)

(7)(7)

r_ = x _i  y _j  z _k 
r = x i y j z k

 
Problem
Rewrite the position vector r  in cylindrical and spherical coordinates

Solution

To transform the position, start with cylindrical coordinates and the basis , , k , we need to use the 
transformation equations for both the Cartesian unit vectors and their related coordinates. For example
_i = ChangeBasis _i, cylindrical

i = cos  sin  
For all the unit vectors at once

_i, _j, _k  =~ ChangeBasis _i, _j, _k , cylindrical  
i = cos  sin  , j = sin  cos  , k = k

The cylindrical basis shares the unit vector k with the Cartesian basis; also the corresponding coordinate z :
x, y, z  =~ ChangeCoordinates x, y, z , cylindrical   

x =  cos , y =  sin , z = z
from which the position r  in the cylindrical basis is given by
subs (4), (5), (2)

r =  cos  cos  sin   sin  sin  cos  z k
simplify (6)

r = z k  
For reference, also compute the inverse formulas

_ , _ , _k  =~ ChangeBasis _ , _ , _k , cartesian  
= i  cos sin  j , = sin  i cos  j , k = k

, , z  =~ ChangeCoordinates , , z , cartesian    

= x2 y2 , = arctan y, x , z = z

To compute the position vector in spherical coordinates, or any other coordinate's system, the procedure
is the same

_i = ChangeBasis _i, spherical
i = sin  cos  r cos  cos  sin  

Note that the cylindrical and spherical systems share the coordinate  and the corresponding unit vector .
Relating the bases

_i, _j, _k  =~ ChangeBasis _i, _j, _k , spherical  
i = sin  cos  r cos  cos  sin  , j = sin  sin  r cos  sin  

cos  , k = cos  r sin  
_r, _ , _  =~ ChangeBasis _r, _ , _ , cartesian   
r = sin  cos  i sin  sin  j cos  k, = cos  cos  i cos  sin  j

sin  k, = sin  i cos  j



• • 

(19)(19)

(20)(20)

o. o. 

(13)(13)

(18)(18)

(14)(14)

(15)(15)

(17)(17)

(16)(16)

Relating the coordinates
x, y, z  =~ ChangeCoordinates x, y, z , spherical

x = r sin  cos , y = r sin  sin , z = r cos

r, ,  =~ ChangeCoordinates r, , , cartesian    

r = x2 y2 z2 , = arccos
z

x2 y2 z2
, = arctan y, x

from which the position in spherical coordinates is
subs (11), (13), (2)
r = r sin  cos  sin  cos  r cos  cos  sin  

r sin  sin  sin  sin  r cos  sin  cos  r cos  cos  

r sin  
simplify (15)

r = r r
In this result we see the position vector is just the product of the radial coordinate r  and the radial unit 
vector r . 

These results (7) and (16) for cylindrical and spherical coordinates can also be computed in a single 
step by operating over the entire vector at the same time. From (2), we have

(2) 
r = x i y j z k

lhs (2) = ChangeBasis rhs (2) , cylindrical, alsocomponents  
r = z k  

lhs (2) = ChangeBasis rhs (2) , spherical, alsocomponents
r = r r

 

Starting from the position in the Cartesian system, now as functions of the time to allow for differentiation,
first note that the Cartesian unit vectors i , j , k  do not depend on time, they are constant vectors. So 
r t  is entered as

restart;
with Physics:-Vectors  :

r_ t  = x t  _i  y t  _j  z t  _k
r t = x t  i y t  j z t  k

Before proceeding further, use a compact display to more clearly visualize the following expressions. 
When in doubt about the contents behind a given display, input show as shown below.
CompactDisplay x, y, z, , r, , , _ , _r, _ , _ t

x t  will now be displayed as x

y t  will now be displayed as y



(26)(26)

(22)(22)

(21)(21)

(23)(23)

o. o. 

(24)(24)

(25)(25)

z t  will now be displayed as z

t  will now be displayed as 

r t  will now be displayed as r

t  will now be displayed as 

t  will now be displayed as 

t  will now be displayed as 

r t  will now be displayed as r

t  will now be displayed as 

t  will now be displayed as 

For the velocity and acceleration, note the dot notation for derivatives with respect to t
v_ t  = diff rhs (20) , t

v t = x
.
 i y

.
 j z

.
 k

show
v t = x

.
t  i y

.
t  j z

.
t  k

a_ t  = diff rhs (22) , t
a t = x

..
 i y

..
 j z

..
 k

 

The position r t as a function of time

Problem
Given the position vector as a function of the time t, rewrite it in cylindrical and spherical coordinates 
while making the curvilinear unit vectors' time dependency explicit.

Solution

To compute the velocity and acceleration in curvilinear coordinates, the procedure for cylindrical, spherical,
or any other curvilinear system of coordinates is always the same. Start by recomputing the position as a 
function of time
lhs (20) = ChangeBasis rhs (20) , cylindrical, also  

* Partial match of 'also' against keyword 'alsothecoordinates' 

r t = z k  
show

r t = z t  k t  t

We see that, unlike the case of the Cartesian unit vectors i , j  and k ,  the curvilinear unit vectors - in this 
case t - depend on the time. This is because their orientation changes along the trajectory r t . The 
same happens when expressing the position vector in spherical coordinates
lhs (20) = ChangeBasis rhs (20) , spherical, alsothecoordinates



(32)(32)

(31)(31)

o. o. 

(29)(29)

(33)(33)

(27)(27)

(30)(30)

(28)(28)

(34)(34)

r t = r r
show

r t = r t  r t
 

The velocity v t

Problem
Rewrite the velocity v t = r

.
t  in cylindrical and spherical coordinates while making the curvilinear unit 

vectors' time dependency explicit .

Solution

For the velocity, 
(22)

v t = x
.
 i y

.
 j z

.
 k

lhs (22) = ChangeBasis rhs (22) , cylindrical, alsothecoordinates
v t = z

.
 k   

.
 
.

lhs (22) = ChangeBasis rhs (22) , spherical, alsothecoordinates  
v t = r 

.
  sin r 

.
 r  r

.

show
v t = r t  

.
t  t  sin t r t  

.
t  t r t  r

.
t

This result in spherical coordinates - as well as the results (30) in cylindrical coordinates - can also be 
achieved by directly differentiating the position in the corresponding coordinates, e.g. for spherical: 
(27) r t = r r
diff (27), t

r
.

t = r 
.
  sin r 

.
 r  r

.

 

The acceleration a t

Problem
Rewrite the acceleration a t = r

..
t in cylindrical and spherical components while making the curvilinear 

unit vectors' time dependency explicit.

Solution

For the acceleration, starting from (24)
(24) 

a t = x
..
 i y

..
 j z

..
 k



(35)(35)

(40)(40)

o. o. 

(36)(36)

(39)(39)

(27)(27)

(38)(38)

(37)(37)

lhs (24) = ChangeBasis rhs (24) , cylindrical, alsothecoordinates

a t =  
. 2 ..

  
..

2 
.
 
.

 z
..
 k

lhs (24) = ChangeBasis rhs (24) , spherical, alsothecoordinates  

a t = r
..

r cos
2

r  
. 2

r 
. 2

 r r sin  cos  
. 2

r 
..

2 
.
 r
.

 

2 r cos  
.
 
.

r 
..
 sin 2 sin  

.
 r
.

 
This result in spherical coordinates - as well as the results (35) in cylindrical coordinates - can also be 
achieved by directly differentiating the position in the corresponding coordinates, e.g. for spherical: 
(27) r t = r r
diff (27), t, t

r
..

t = r  r
..

r 
. 2

 sin
2

r 
. 2

r sin  cos  
. 2

r 
..

2 
.
 r
.

 2 r cos  
.
 
.

r 
..
 sin 2 sin  

.
 r
.

 
 

Deriving these formulas

All these results for the position r , velocity v  and acceleration a  are based on the differentiation rules for 
cylindrical and spherical unit vectors. It is thus instructive to also be able to derive any of these formulas; 
for that, we need the differentiation rule for the unit vectors. For example, for the spherical ones

restart;
with Physics:-Vectors  :
CompactDisplay x, y, z, , r, , , _ , _r, _ , _ t , quiet

map %diff = diff, _r, _ , _ t  , t
dr
dt

=
.
 

.
 sin  ,

d
dt

=
.
 r

.
 cos  ,

d
dt

=
.
 

The above result contains, in the last equation, the cylindrical radial unit vector t ; rewrite it in the 
spherical basis
_ t  = ChangeBasis _ t , spherical

= sin  r cos  
So the differentiation rules for spherical unit vectors, with the result expressed in the spherical system, are
subs (39), (38)

dr
dt

=
.
 

.
 sin  ,

d
dt

=
.
 r

.
 cos  ,

d
dt

=
.
 sin  r cos  

 
Problem
With this information at hand, derive, in steps, the expressions for the velocity and acceleration in 
cylindrical and spherical coordinates



(47)(47)

(42)(42)

(49)(49)

(48)(48)

(41)(41)

(44)(44)

o. o. 

(46)(46)

(45)(45)

(27)(27)

(43)(43)

Solution

We want to compute
%diff (27), t

t
r t = r r

expand (41)
d
dt

r t =
dr
dt

 r r 
dr
dt

Introducing the differentiation rules (40) for the unit vectors 
subs (40), (42)

d
dt

r t =
dr
dt

 r r 
.
 

.
 sin  

Performing the inert (grayed) derivatives
value (43)

r
.

t = r
.
 r r 

.
 

.
 sin  

In the same way, for the acceleration
%diff (27), t, t

2

t2
r t = r r

expand (45)
d2

dt2
r t =

d2r
dt2

 r 2 
dr
dt

 
dr
dt

r 
d2r
dt2

subs (40), (46)
d2

dt2
r t =

d2r
dt2

 r 2 
dr
dt

 
.
 

.
 sin  r 

t
.
 

.
 sin  

expand (47)
d2

dt2
r t =

d2r
dt2

 r 2 
dr
dt

 
.
 2 

dr
dt

 
.
 sin  r 

d2

dt2
 r 

.
 

d
dt

r 
d2

dt2
 sin  r 

.
 

d
dt

 cos  r 
.
 sin  

d
dt

subs (40), (48)
d2

dt2
r t =

d2r
dt2

 r 2 
dr
dt

 
.
 2 

dr
dt

 
.
 sin  r 

d2

dt2
 r 

.
 

.
 r

.
 cos  r 

d2

dt2
 sin  r 

.
 

d
dt

 cos  r 
. 2

 sin  sin  r

cos  
value (49)



(50)(50)

(54)(54)

(52)(52)

(53)(53)

o. o. 

(27)(27)

• • 

(51)(51)

r
..

t = r
..
 r 2 r

.
 
.
 2 r

.
 
.
 sin  r 

..
 r 

.
 

.
 r

.
 cos  r 

..
 sin  r 

.
 

.
 cos  r 

. 2
 sin  sin  r cos  

Collect vector components
Physics:-Vectors:-Collect (50)

r
..

t = 2 r 
.
 
.
 cos 2 r

.
 
.
 sin r 

..
 sin  r 

. 2
 sin

2
r 

. 2
r
..

 r
. 2

 sin  r cos 2 r
.
 
.

r 
..

 
 

Summary
You can express r t , v t  and a t in any of the Cartesian, cylindrical or spherical systems via three 
different methods: 1) using the ChangeBasis command 2) differentiating 3) deriving the formulas by 
differentiating in steps, starting from the differentiation rules for the curvilinear unit vectors.

Velocity and acceleration in the case of 2-dimensional motion on the x, y 
plane

Problem
Derive formulas for velocity and acceleration in the case of 2-dimensional motion on the x, y plane, 
starting from the general 3-dimensional formulas above, e.g. (44) and (51) in spherical coordinates. 
Specialize the resulting formulas for the case of circular motion.

Solution
Starting from the general 3-dimensional formula (44) in spherical coordinates, the formulas for 2-

dimensional motion on the x, y plane can be obtained taking =
2

. For the velocity, we have

eval (44), t =
2

r
.

t = r
.
 r r 

.
 

Note that while this formula involves the coordinate r , since by construction t =
2

, the coordinate r  

on the x, y  plane is equal to the cylindrical radial coordinate ; indeed, (52) is equal to the formula (30) 
if we take z t = 0, z

.
t = 0, 

%eval (30) , z t = 0
v t = z

.
 k   

.
 
.

z = 0
value (53)

v t =   
.

 
.

Also, (52) is written in terms of the radial coordinate r , but in view of t =
2

, the radial coordinate 

lies on the plane, so again we have r = .



(50)(50)

(59)(59)

• • 

(56)(56)

(58)(58)

(55)(55)

o. o. 

(57)(57)

(61)(61)

(27)(27)

(60)(60)

For the acceleration,

eval (51), t =
2

r
..

t = 2 r
.
 
.

r 
..

 r 
. 2

r
..

 r

%eval (35), z t = 0

a t =  
. 2 ..

  
..

2 
.
 
.

 z
..
 k

z = 0
value (56)

a t =  
. 2 ..

  
..

2 
.
 
.

 

The particular case of circular motion on the x, y plane is obtained by taking r t = r0 , a constant in 

addition to =
2

, 

eval (44), t =
2

, r t = r0  

r
.

t = r0 
.
 

eval (51), t =
2

, r t = r0   

r
..

t = r0 
..
 r0 

. 2
 r

Here too we have r =  since t =
2

, and we recover the expression of the acceleration in cylindrical 

coordinates
%eval (57), t = r0

a t =  
. 2 ..

  
..

2 
.
 
.

 
= r0

value (60)

a t = r0 
. 2

 r0 
..
 

 

The equations of motion

A single particle

restart; 



(50)(50)

(68)(68)

(63)(63)

• • 

(65)(65)

(64)(64)

o. o. 

(66)(66)

(62)(62)

(27)(27)

(67)(67)

(69)(69)

with Physics:-Vectors  :
CompactDisplay r_, p_, F_, L_, N_ t

r t  will now be displayed as r

p t  will now be displayed as p

F t  will now be displayed as F

L t  will now be displayed as L

N t  will now be displayed as N

The equation of motion of a single particle is Newton's 2nd  law
F_ t = m diff r_ t , t, t   

F = m r
..

where r
..

t = a t  is the acceleration and m r
.

t = p t  is the linear momentum, so in terms of  p
F_ t = diff p_ t , t    

F = p
.

We define the angular momentum L  of a particle, and the torque N  acting upon it, as 
L_ t  = r_ t p_ t

L = r p
N_ t  = r_ t F_ t  

N = r F

Differentiating the definition of L
diff (65), t

L
.

= r
.

p r p
.

Since r
.

= v  is parallel to p = m v , the first term in the above cancels, and in the second term, from (64), 
p
.

= F
eval (67), diff r_ t , t = 0, diff p_ t , t = F_ t

L
.

= r F
from which 
subs rhs = lhs (68) , (66)

N = L
.

 

As discussed below, in the case of a closed system, F = 0 and these two equations result in 

p
.

= 0,     L
.

= 0

that is, the linear and angular momentum are conserved quantities. Note that L
.

= 0 does not require that 
F = 0, only that r F = 0.

The equations of motion - vectorial form



(50)(50)

(72)(72)

(75)(75)

o. o. 

(70)(70)

(74)(74)

(27)(27)

(73)(73)

(71)(71)

Problem
Assuming that the acceleration is known as a function of t, compute:
a) The trajectory r t starting from a t = r

..
t

b) A solution for each of the three Cartesian components
c) A solution for generic initial conditions 

Solution

restart; 
with Physics:-Vectors  :
CompactDisplay x, y, z, , r, , , _ , _r, _ , _ t , quiet :

a) Let r t  be the position of the particle in a reference system; then, the velocity and acceleration are 
given by
v_ t = diff r_ t , t

v t = r
.

t
a_ t = diff r_ t , t, t

a t = r
..

t
If the acceleration is known as a function of t, the trajectory is computed by integrating (71)
dsolve (71)

r t = a t dt dt c1 t c2

where the vectorial integration constants, c1  and c2 , are specified by the initial conditions of the problem 
(see c) below), typically by the position and velocity at some instant, say r t

t = t0

= r 0  and 

r
.

t
t = t0

= v0 . 

_______________________________________

b) The integration of vectorial equations is also frequently performed after expressing r t , v t  and 
a t  in a particular system of coordinates. For example, in the Cartesian system (71) has the form

rhs = lhs (24)
x
..
 i y

..
 j z

..
 k = a t

Now suppose that the three components of the acceleration are known as a function of time
subs a_ t = ax t _i ay t _j az t _k, (73)

x
..
 i y

..
 j z

..
 k = ax t  i ay t  j az t  k

Vectorial equations like this one can be integrated directly, provided that they are expressed in a particular 
system of coordinates and the unit vectors are constant or known expressions of the time 
dsolve (74)

i  x j  y k z = i  ax t dt dt c3 t c4 j  ay t dt dt c5 t c6 k 

az t dt dt c7 t c8



(50)(50)

(81)(81)

(77)(77)

(76)(76)

o. o. 

(78)(78)

(27)(27)

(80)(80)

(79)(79)

_______________________________________

c) The vectorial initial conditions r 0  and v0 , specifying the integration constants c3, c4, c5, c6, c7, c8 , 
can also be written in components
x t0 = x0, y t0 = y0, z t0 = z0 t , diff x t0 , t0 = vx0, diff y t0 , t0 = vy0 , diff z t0 , t0 = vz0

x t0 = x0, y t0 = y0, z t0 = z0 t , xt
0

= vx0, yt
0

= vy0, zt
0

= vz0

Passing this information, the system can be solved taking these initial conditions into account - 
dsolve (74), (76) , x, y, z t

x =
t
0

t

t
0

ax d d vx0 t t0 vx0 x0, y =
t
0

t

t
0

ay d d vy0 t t0 vy0 y0, z

=
t
0

t

t
0

az d d vz0 t c4

Note that a vectorial equation is also always equivalent to a system of equations, one for each of the 
components, with or without initial conditions:
convert (74), setofequations

x
..

= ax t , y
..

= ay t , z
..

= az t

dsolve (78), x, y, z

x = ax t dt dt c7 t c8, y = ay t dt dt c5 t c6, z = az t dt dt c3 t c4

 

The case of constant acceleration

Problem
Starting from the vectorial equation (72) for r t , derive the formula for constant acceleration

Solution

restart; 
with Physics:-Vectors  :

From the vectorial equation
(72) 

r t = a t dt dt c1 t c2

in the particular case of constant acceleration,
eval (72), a_ t  = a0_

r t = a0 dt dt c1 t c2

value (81)



(50)(50)

(82)(82)

(85)(85)

(84)(84)

(86)(86)

o. o. 

(27)(27)

(87)(87)

(83)(83)

r t =
1
2

 a0 t2 c1 t c2

The two vectorial arbitrary constants c1  and c2  can be specialized after giving initial conditions, the 
position and velocity at some point in time, which in the most general form are entered as
%eval r_ t , t = t0 = r0_, %eval diff r_ t , t , t = t0 = v0_

r t
t = t0

= r 0, r
.

t
t = t0

= v0

The vectorial differential equation (71) a = r
..

eval (71), a_ t  = a0_  

a0 = r
..

t

Its solution, using the initial conditions (83) (the ordering in the list passed to dsolve is irrelevant), is the 
traditional high-school formula
dsolve (83), (84) , r_ t

r t =
t t0

2 a0

2
t t0  v0 r 0

 

Motion under gravitational force close to the Earth's surface

Problem
Derive a formula for motion under gravitational force close to the Earth's surface

Solution

restart; 
with Physics:-Vectors  :

In a reference system whose origin is at the center of the Earth, the gravitational acceleration of a small (if 
compared with the planet) mass that is close to the surface (if compared with the planet's radius) is 
approximately constant in magnitude
 g_ = g _r

g = g r
where r  is the radial unit vector that points outwards. Placing a reference system on the surface of the 
planet, thus not far away from the system's origin, the surface can be approximated to "flat" and the radial 
direction of the gravitational acceleration can be approximated to constant vertical, i.e. g = g k . If, in 
addition, we consider only a reasonably small interval of time, such that the reference system can be 
considered inertial (the rotation of the planet in such a small amount of time can be neglected), we have
a0_ = g _k

a0 = g k

and for the sake of simplicity we chose the initial value t0 = 0, so the trajectory (85) of a particle
(85) 



(50)(50)

(82)(82)

(91)(91)

(90)(90)

o. o. 

(89)(89)

(27)(27)

(88)(88)r t =
t t0

2 a0

2
t t0  v0 r 0

becomes
subs (87), t0 = 0, (85)

r t =
1
2

 t2 g k t v0 r 0

 

Motion under gravitational force not close to the Earth's surface

The problem of two particles of masses m1  and m2  gravitationally attracted to each other, discarding 
relativistic effects, is formulated by Newton's law of gravity: the particles attract each other - so both move 

- with a force along the line that joins the particles and whose magnitude is proportional to 
1
r2 , where r  

represents the distance between the particles (this problem is treated in general form in the more advanced 
sections).

Problem
As a specific case, consider the problem of a particle of mass m M , where M is earth's mass, moving
not close to the surface (if compared with the radius of earth).

Solution

restart; 
with Physics:-Vectors  :
CompactDisplay x, y, z, , r, , , _ , _r, _ , _ , r_ t , quiet

The movement can be approximated to that of a particle of mass m (which is much smaller than M) 
moving under a central force in a reference system with its origin at the center of the planet. The 
gravitational force acting on m  is thus

F_ t  = 
G M m _r t

r t 2

F t =
G M m r

r2

where G is the gravitational constant and we are assuming that the planet is not moving (because 
M m ). Here r t is the distance from center of the planet to the particle, that is the radial spherical 
coordinate r , and r t  is the radial unit vector. The minus sign reflects the fact that the particle of small 
mass m  is attracted to the center of the planet of big mass M .

The vectorial equation of motion is thus 
rhs (90)

m
= diff r_ t , t, t

G M r
r2 = r

..



(50)(50)

(93)(93)

(82)(82)

(95)(95)

(92)(92)

o. o. 

(27)(27)

(88)(88)

(94)(94)

Since the force has its simpler form expressed in the spherical system, it is appropriate to also express the 
acceleration on the right-hand side in the spherical coordinates and basis using (37)
(37) 

r
..

= r  r
..

r 
. 2

 sin
2

r 
. 2

r sin  cos  
. 2

r 
..

2 
.
 r
.

 2 r cos  
.
 
.

r 
..
 sin 2 sin  

.
 r
.

 
It can be shown that the motion happens on a plane. So by orienting the z axis perpendicular to that plane 

we can directly simplify this formulation taking t =
2

eval (37), t =
2

r
..

= r  r
..

r 
. 2

r 
..

2 
.
 r
.

 
Substituting into (91) we get
subs (93), (91)

G M r
r2 = r  r

..
r 

. 2
r 

..
2 

.
 r
.

 

Rewriting this vectorial equation as a system of equations,
convert (94), setofequations

0 = r 
..

2 
.
 r
.
,

G M
r2 = r

..
r 

. 2

This is a non-linear coupled system of equations for the unknowns t  and r t . This problem is further
discussed in the section Motion in a central field, but, in general, for coupled systems of equations, it is 
instructive to first analyze the system decoupling it. To accomplish this we can use PDEtools:-casesplit. 
There are two possible orderings. With r, , the system splits into two cases
PDEtools:-casesplit (95), r, , caseplot

========= Pivots Legend =========

p1 =
.

p2 = 4 
. 4

3 
.. 2

2 
.
 
...



(50)(50)

(82)(82)

(96)(96)

(27)(27)

(88)(88)

o. o. 

 

1

 

2

`=`

p1

p2

Rif Case Tree

r3 =
4 

. 2
 G M

4 
. 4

3 
.. 2

2 
.
 
... ,

....
=

4 
..
 
. 4

21 
.. 3

22 
..
 
.
 
...

4 
. 2 where r 0,

.
0 , r

..
=

G M
r2 ,

.
= 0 where r 0

The first case happens when 
.

0; the system is decoupled as a fourth order ODE for t , and, 
assuming that ODE can be solved, r t 3 is then expressed as a function of that solution t . With the 
opposite ordering the system decouples into a single case 
PDEtools:-casesplit (95), , r   



(50)(50)

(82)(82)

(97)(97)

o. o. 

(27)(27)

(98)(98)

(88)(88)

..
=

2 
.
 r
.

r
,

. 2
=

r
..
 r2 G M

r3 , r
...

=
3 r

..
 r
.
 r2 r

.
 G M

r3 where r 0

This decoupling can be solved to the end, although the algebraic structure of the solution is of little use
dsolve (97)

r = RootOf

_Z

_a

RootOf ln _a 2 

_Z
_h

4 G2 M2 4 G M _h2 _h4 4 c2

d_h c3

d_a

t c4 , r = RootOf

_Z

_a

RootOf ln _a 2 

_Z
_h

4 G2 M2 4 G M _h2 _h4 4 c2

d_h c3

d_a

t c4 , =
r r

..
 r2 G M

r2 dt c1, =
r r

..
 r2 G M

r2 dt c1

 

Circular motion

Problem
Determine the angular velocity 

.
 in the case of circular motion and show it is constant.

Solution



(50)(50)

(82)(82)

(97)(97)

o. o. 

(99)(99)

(100)(100)

(103)(103)

(101)(101)

(27)(27)

(88)(88)

(102)(102)

restart; 
with Physics:-Vectors  :
CompactDisplay x, y, z, , r, , , _ , _r, _ , _ t , quiet

The equations of movement (95) 
(95) 

0 = r 
..

2 
.
 r
.
,

G M
r2 = r

..
r 

. 2

are tractable in the case of circular motion, that is when r
.

= 0. In this case r t = r0 , where r0  is a 
constant, and the starting system of equations is
eval (95), r t = r0

0 = r0 
..
,

G M
r0

2 = r0 
. 2

The first of these equations shows that r t = r0  automatically implies that 
..

= 0, that the motion is 

circular, and that the motion has a constant angular velocity 
.
, which is given by the second equation

op 2, (100)
G M
r0

2 = r0 
. 2

This expression (101) is also called centripetal acceleration, and the value of the angular velocity 
.
 is

solve (101), diff t , t

.
=

r0 G M

r0
2 ,

.
=

r0 G M

r0
2

 

Escape velocity

Problem
Determine the velocity that a particle of mass m should have at Earth's surface in order to escape the 
planet's gravitational attraction.

Solution

restart; 
with Physics:-Vectors  :
CompactDisplay x, y, z, , r, , , _ , _r, _ , _ t , quiet

The escape velocity can be computed from the second case in (96), 
(96) 

r3 =
4 

. 2
 G M

4 
. 4

3 
.. 2

2 
.
 
... ,

....
=

4 
..
 
. 4

21 
.. 3

22 
..
 
.
 
...

4 
. 2 where r 0,

.
0 , r

..
=



(50)(50)

(82)(82)

(108)(108)

(106)(106)

(97)(97)

o. o. 

(107)(107)

(103)(103)

(109)(109)

(27)(27)

(104)(104)

(105)(105)

(88)(88)

(110)(110)

G M
r2 ,

.
= 0 where r 0

that is, when 
.

= 0. This case represents the particle of mass m either falling into the center of the planet 
following a straight line, or, depending on the initial value of the radial velocity, the particle is escaping 
from the attraction, arriving at infinity with radial velocity v

r =
= 0. So,

(96) 2

r
..

=
G M
r2 ,

.
= 0 where r 0

To compute the escape velocity, we need to express this equation in terms of the velocity
subs diff r t , t = v t , (104)

v
.

t =
G M
r2 ,

.
= 0 where r 0

then the velocity as a function of the position instead of time, as in
OFF
diff v t , t = diff v r , r v r  

v
.

t =
d
dr

v r  v r

and also remove r's dependency on the time, so take r t = r
subs (106), r t = r, (105)

d
dr

v r  v r =
G M
r2 ,

.
t = 0 where r 0

Take the contents of this structure
op op 1, (107)

d
dr

v r  v r =
G M
r2 ,

.
t = 0

Suppose the initial velocity is the velocity when the small particle of mass m is at the surface of the planet 
where r = R, the radius of the planet. So v R = v0 . We want to calculate the value of v0  such that 
v = 0. For that purpose, solve the system (108) with that initial value of the velocity; discarding the 
equation 

.
= 0 as unnecessary, we are left with the system we want to solve

(108) 1 , v R = v0  

d
dr

v r  v r =
G M
r2 , v R = v0

All the symbols involved are greater than 0, so tackle the problem assuming positive
dsolve (109)  assuming positive

v r =
R r R r v0

2 2 G M R 2 G M r

r R

The condition is that v
r =

= 0

0 =  limit rhs (110) , r = infinity



(50)(50)

(82)(82)

(115)(115)

(111)(111)

(114)(114)

(97)(97)

(117)(117)

o. o. 

(113)(113)

(103)(103)

(27)(27)

(112)(112)

(88)(88)

(116)(116)

0 =
R2 v0

2 2 G M R

R
From which the escape velocity we are looking for is
solve (111), v0

v0 =
2  G M R

R
, v0 =

2  G M R
R

 

Different acceleration in different regions

Problem
Suppose a particle is moving along the x axis according to

x t = t3 8 t2 18 t 3
a) Determine the regions where the motion has positive and negative acceleration. Compute the position at 
t ! . 
b) Compute the velocity vx t corresponding to x t = t3 8 t2 18 t 3, starting - not from this 
expression for x t  but from the acceleration ax t = x

..
t

Solution

restart;
with Physics:-Vectors : 

x t  = t3 8 t2 18 t 3 
x t = t3 8 t2 18 t 3

a) The acceleration is the second derivative of the position. In this case y t = 0, z t = 0, so
ax t = diff rhs (113) , t, t

ax t = 6 t 16

Therefore, the motion is retarded (negative acceleration) when 
 6 t 16  0

6 t 16
that is, the open interval (to represent intervals, see RealRange)
solve (115), t

,
8
3

The motion has positive acceleration in the interval
solve 6 t 16 0, t

8
3

,

When t ! , the position x approaches  as expected, since the particle moves in a region of positive 



(50)(50)

(123)(123)

(82)(82)

(118)(118)

(121)(121)

(124)(124)

(111)(111)

(119)(119)

(97)(97)

o. o. 

(103)(103)

(122)(122)

(27)(27)

(125)(125)

(88)(88)

(120)(120)

and increasing acceleration
limit (113), t = infinity

lim
t ! x t =

b) The acceleration ax t = x
..

t  is
diff vx t , t  = rhs (114)

vx
.

t = 6 t 16

dsolve (119)
vx t = 3 t2 c1 16 t

The integration constant c3  needs to be adjusted to match the given trajectory (106). To do that,
diff x t , t = rhs (120)

x
.

t = 3 t2 c1 16 t

dsolve (121)
x t = t3 c1 t 8 t2 c2

Now equating (122) to (106)
 (122) (113)

0 = c1 t c2 18 t 3

PDEtools:-Solve (123), c1, c2 , independentof = t

c1 = 18, c2 = 3

From which the velocity vx t  is given by
subs (124), (120)

vx t = 3 t2 16 t 18

 

The equations of motion using tensor notation

Using vector notation to formulate the equations of motion of a particle in Cartesian coordinates is 
relatively simple. However, for certain problems it may be advantageous to use curvilinear coordinates and
/ or tensor notation.

restart; 
with Physics : with Vectors :
 

Cartesian coordinates

Review of Vector notation

Generally speaking, the equations of motion of a particle have the position vector is a function of time, the 
velocity is its first derivative, and the acceleration is its second derivative. In Cartesian coordinates



(82)(82)

(97)(97)

(129)(129)

(103)(103)

(27)(27)

(130)(130)

(126)(126)

(50)(50)

(131)(131)

(111)(111)

(128)(128)

o. o. 

(127)(127)

(88)(88)

(132)(132)

r_ t  = x t  _i  y t  _j  z t  _k 
r t = x t  i y t  j z t  k

diff (126), t

r
.

t = x
.

t  i y
.

t  j z
.

t  k
diff (127), t  

r
..

t = x
..

t  i y
..

t  j z
..

t  k

Newton's 2nd law in an inertial system of reference is given by
F_ t  = m rhs (128)  

F t = m x
..

t  i y
..

t  j z
..

t  k
 
Tensor notation

Problem
Set a flat 3D spacetime and formulate the equation of movement using tensor notation.

Solution

In Cartesian coordinates, the tensorial form of the equations (129) is straightforward. In a flat spacetime - 
Galilean reference system - the three space coordinates x, y, z  form a 3D tensor, as do their first and 
second derivatives. Set the spacetime to be 3-dimensional and Euclidean, and use lowercaselatin indices 
for the corresponding tensors
Setup coordinates = cartesian, metric = Euclidean, dimension = 3, spacetimeindices = lowercaselatin  

The dimension and signature of the tensor space are set to 3,    

 Systems of spacetime coordinates are: X = x, y, z

 _______________________________________________________

 The Euclidean metric in coordinates  x, y, z

 _______________________________________________________

g
,

=

1 0 0

0 1 0

0 0 1

_______________________________________________________

coordinatesystems = X , dimension = 3, metric = 1, 1 = 1, 2, 2 = 1, 3, 3 = 1 ,
spacetimeindices = lowercaselatin

The position, velocity, and acceleration vectors are expressed in tensor notation as
X j t

Xj t

diff (131), t
X
.

j t

diff (132), t  



(82)(82)

(136)(136)

(138)(138)

(97)(97)

(137)(137)

(103)(103)

(140)(140)

(135)(135)

(27)(27)

(50)(50)

(134)(134)

(111)(111)

(139)(139)

o. o. 

(141)(141)

(88)(88)

(133)(133)X
..

j t

Set a tensor Fj t  to represent the three Cartesian components of the force
Define F j = Fx t , Fy t , Fz t  

Defined objects with tensor properties

a, Fj, a,
a
, ga, b,

a, b, c
, Xa

Newton's 2nd law (129), now expressed in tensorial notation, is given by
F j  = m (133)

Fj = m X
..

j t

The three differential equations represented by this tensorial form of (129) are, as expected,
TensorArray (135), output = setofequations  

Fx t = m x
..

t , Fy t = m y
..

t , Fz t = m z
..

t

Things are straightforward in Cartesian coordinates because the components of the line element 
dr = dx i dy j dz k  are exactly the components of the tensor d Xj
TensorArray d_ X j  

d x d y d z

and so, the form factors (see related MaplePrimes post) are all equal to 1.

In the case of no external forces F t = 0 = Fj , the equations of motion, whose solution is the trajectory, 
can be formulated as the equations of the path of minimal length between two points, a geodesic. Since in 
this case the spacetime is flat, the geometry is Euclidean, as can be seen in the 3x3 identity metric matrix 
(130), and so the previously mentioned two points lie on a plane; the geodesic is a straight line. The 

differential equations of this geodesic are thus the equations of motion (135) with  Fj = 0, and can be 
computed using Geodesics
Geodesics t

z
..

t = 0, y
..

t = 0, x
..

t = 0
Geodesics t, output = solutions  

x t = c1 t c2, y t = c3 t c4, z t = c5 t c6

This formulation also works when there are forces: equate the output to Fj
F ~a  = m lhs Geodesics t, tensornotation

F a = m X
.. a t

TensorArray (140)
Fx t = m x

..
t Fy t = m y

..
t Fz t = m z

..
t

So (140) is the tensorial form of Newton's 2nd  law; as shown in the following problem, it can always be 
computed in this way using Geodesics t, tensornotation .
 

Curvilinear coordinates



(82)(82)

(97)(97)

(103)(103)

(27)(27)

(50)(50)

(144)(144)

(146)(146)

(142)(142)

(111)(111)

(145)(145)

o. o. 

(147)(147)

(143)(143)

(88)(88)

(133)(133)

Review of Vector notation

In the case of curvilinear coordinates, for example cylindrical or spherical, the form of these equations is 
obtained by changing the basis and coordinates used to represent the position vector 
(126) r t = x t  i y t  j z t  k . 

In cylindrical coordinates,
CompactDisplay rho, _rho, phi, _phi, z, r_, F_ t   

t  will now be displayed as 

t  will now be displayed as 

t  will now be displayed as 

t  will now be displayed as 

z t  will now be displayed as z

r t  will now be displayed as r

F t  will now be displayed as F
r_ t = ChangeBasis rhs (126) , cylindrical, alsocomponents  

r = z k  

where, since in (126) the coordinates x, y, z  depend on t, in (143) above not just t  and z t  but also
the unit vector t  all depend on t. After having set a compact display for functions, you can always use 
the show command to see their dependency
show

r t = z t  k t  t
The velocity is computed as usual, by differentiating
diff (143), t

r
.

= z
.
 k

.
   

.

For the acceleration,
diff (145), t

r
..

=  
. 2

 
..

 
..
 2 

.
 
.

z
..
 k

Newton's 2nd law becomes
F_ t  = m rhs (146)

F = m  
. 2

 
..

 
..
 2 

.
 
.

z
..
 k

 
Tensor notation

Problem
Rewrite the equation of movement in cylindrical coordinates using tensor notation.

Solution

We start with the same setup of the previous problem:



(50)(50)

(82)(82)

(148)(148)

(111)(111)

(97)(97)

(149)(149)

o. o. 

(103)(103)

(27)(27)

(151)(151)

(88)(88)

(133)(133)

(150)(150)

Setup coordinates = cartesian, metric = Euclidean, dimension = 3, spacetimeindices = lowercaselatin
 Systems of spacetime coordinates are: X = x, y, z

 _______________________________________________________

 The Euclidean metric in coordinates  x, y, z

 _______________________________________________________

ga, b =

1 0 0

0 1 0

0 0 1

_______________________________________________________

coordinatesystems = X , dimension = 3, metric = 1, 1 = 1, 2, 2 = 1, 3, 3 = 1 ,
spacetimeindices = lowercaselatin

The tensorial form could be obtained by transforming the tensorial form in Cartesian coordinates, 
(140) F a = X

.. a t  using the TransformCoordinates  command with the transformation from x, y, z  

to , , z
tr  X  =~ ChangeCoordinates X , cylindrical  

tr x =  cos , y =  sin , z = z
However, it is simpler and more instructive to only transform the underlying metric ga, b . This has the 
advantage that all the geometrical subtleties of curvilinear coordinates, like scale factors and the 
dependency of unit vectors on curvilinear coordinates, are automatically and succinctly encoded in the 
metric. To transform and set the result as the new metric all in one go, use the setmetric optional argument
TransformCoordinates tr, g_ j, k , rho, phi, z , setmetric  :

 _______________________________________________________

Coordinates: , , z . Signature:   

 _______________________________________________________

ga, b =

1 0 0

0
2

0

0 0 1

 _______________________________________________________
The computation of geodesics, that is the equation of movement in the absence of forces, can now be 
computed directly using Geodesics ; it assumes that the coordinates , , z  depend on a parameter, the 
first argument passed:
Geodesics t

..
=

. 2
 ,

..
=

2 
.
 
.

, z
..

= 0

These are the same equations shown in (147) after taking F = 0. One of the interesting features of 
computing with tensors is that, as previously mentioned, the geometrical subtleties of curvilinear 



(50)(50)

(82)(82)

(152)(152)

(111)(111)

(154)(154)

(97)(97)

3. 3. 

(156)(156)

o. o. 

1. 1. 

(103)(103)

(27)(27)

2. 2. 

(153)(153)

(155)(155)

(88)(88)

(133)(133)

coordinates are automatically encoded in the metric (150). 

To understand how the geodesic equations in (151) are computed in one go, one can perform the 
calculation in steps: 

Make  a function of t directly in the metric

Compute - not the final form of the equations (151) - but the intermediate form which expresses the 
geodesic equation using tensor notation, in terms of Christoffel symbols

Compute the components of this tensorial equation for the geodesic (using TensorArray)

For step 1, we have
subs rho = rho t , g_

ga, b =

1 0 0

0
2

0

0 0 1

show

ga, b =

1 0 0

0 t
2

0

0 0 1

Set this metric so t
Setup (153) :

 _______________________________________________________

Coordinates: , , z . Signature:   

 _______________________________________________________

ga, b =

1 0 0

0
2

0

0 0 1

 _______________________________________________________
For step 2, the geodesic equations in tensor notation with coordinates depending on the time t are 
computed by passing the optional argument tensornotation
Geodesics t, tensornotation

X
.. a t b, c

a
 X
. b t  X

. c t = 0

Step 3: compute the components of this tensorial equation
TensorArray (155), output = listofequations  

. 2
 

..
= 0,

..
 2 

.
 
.

= 0, z
..

= 0

This is the expected result, the same as (151). 



(50)(50)

(82)(82)

(111)(111)

(97)(97)

(159)(159)

o. o. 

(157)(157)

(103)(103)

(27)(27)

(88)(88)

(133)(133)

(158)(158)

Having the tensorial equation (155) is also useful for formulating the equations of motion in the presence 
of force. For this purpose, redefine the contravariant tensor F j  to represent the force in the cylindrical basis
Define F ~j = F t , F t , Fz t  

Defined objects with tensor properties

a
, a, Fj, a, Ra, b, Ra, b, c, d, Ca, b, c, d,

a
, ga, b, a, b, c, Ga, b,

a, b, c
, Xa

Now, Newton's 2nd law, expressed using vector notation as (147), in tensor notation is given as done in 
(140), using Geodesics t, tensornotation
F ~a  = m lhs Geodesics t, tensornotation

F a = m X
.. a t b, c

a
 X
. b t  X

. c t

TensorArray (158)

F t = m 
. 2

 
..

F t =
m 

..
 2 

.
 
.

Fz t = m z
..

 
So (158) is the tensorial form of Newton's 2nd  law, where we recall (see related MaplePrimes post) that, 
to obtain the vector components of F t  from these tensor components F a , we need to multiply the latter 

by the scale factors 1, , 1 . Therefore, the component of F in the direction of  is equal to 

F t  .  = F t = m 
.. 2 

.
 
.

. 

Many-particle systems

Center of Mass
Given a system of n particles of masses mi  with positions r i  in some frame of reference K, the center of 
mass of the system is defined as

 R = i = 1

n

mi r i

i = 1

n

mi

The velocity of the center of mass is thus 

V  = R 
.

= i = 1

n

mi r
.
i

i = 1

n

mi

 

Problem
Consider a system of particles viewed from two systems of reference, K and K', that move with respect to 
each other at a constant velocity V measured in K. Show that:
a) When V is the velocity of the center of mass, the total momentum P '  measured in K'  is equal to 0.



(50)(50)

(160)(160)

(82)(82)

(162)(162)

(164)(164)

(111)(111)

(161)(161)

(97)(97)

o. o. 

(103)(103)

(27)(27)

(163)(163)

(165)(165)

(88)(88)
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b) The relation between P and the velocity V of the center of mass, both measured in K, is the same as the 

relation p = m v  between the momentum, velocity and mass of a single particle of mass =
i = 1

n

mi .

Solution

restart;
with Physics:-Vectors :

The relation between the velocities of each particle in the systems K and K' are
v_ i  = V_  v '_ i

vi = V v'i
The momenta of a single particle in K and K' are thus related by
m i (160)

mi vi = mi V v'i
and the total momentum by
map Sum, (161), i = 1 ..n

i = 1

n

mi vi =
i = 1

n

mi V v'i

expand (162)

i = 1

n

mi vi = V 
i = 1

n

mi
i = 1

n

mi v'i

a) Taking V as the velocity of the center of mass, 

subs V = i = 1

n

mi vi

i = 1

n

mi

, (163)

i = 1

n

mi vi =
i = 1

n

mi vi
i = 1

n

mi v'i

where the left-hand side is the total momentum 
i = 1

n

mi vi = P measured in the K system, and on the right-

hand side P ' =
i = 1

n

mi v'i  is the total momentum measured in the K' system. Passing all terms to the left, 

we have
rhs lhs (164)  = 0

i = 1

n

mi v'i = 0
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that is, when in (163)  V = i = 1

n

mi vi

i = 1

n

mi

 it follows that P ' = 
i = 1

n

mi v'i = 0.

_______________________________________

b) Inserting (165) P ' = 0 into (163), we get

subs (165),
i = 1

n

mi vi = P_, (163)

P = V 
i = 1

n

mi

 
therefore the relation between P and the velocity V of the center of mass is the same as the relation 

p = m v  between the momentum, velocity and mass of a single particle of mass =
i = 1

n

mi .

The equations of motion

Problem

Show that, for a system of particles with total mass =
i = 1

n

mi , Newton's 2nd law for each particle 

Fi = mi r
..

i  implies that Fext =  R
..

, where R is the center of mass and Fext  is the external force applied to 
the system (it excludes the force that the particles exercise on each other).

Solution

restart; 
with Physics:-Vectors  :
CompactDisplay r_ i , R_ t

R t  will now be displayed as R

r t  will now be displayed as r

The force Fi  acting on the ith  particle has two parts
Sum f_ i, j , j = 1 ..n   f_ i, ext

j = 1

n

f i, j f i, ext

where the first term represents the forces acting on the ith  particle from the other particles, and f i, ext  

represents all other forces acting on the ith  particle. The total force acting on the system is thus the sum of 
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these forces from 1 to n
F_ = Sum (168), i = 1 ..n

F =
i = 1

n

j = 1

n

f i, j f i, ext

expand (169)

F =
i = 1

n

j = 1

n

f i, j
i = 1

n

f i, ext

The first term on the right-hand side is zero: due to Newton's 3rd  law, to each f i, j  term in that sum 

corresponds another term f j, i = f i, j ,
expand subs f_ i, j = 0, (170)

F =
i = 1

n

f i, ext

In turn, F on the left-hand side can be written as the sum of m r
..

i  over the n particles
F_ = Sum m i diff r_ i t , t, t , i = 1 ..n   

F =
i = 1

n

mi r
..

i

subs (172), (171)

i = 1

n

mi r
..

i =
i = 1

n

f i, ext

Introducing the center of mass 
R_ t  = Sum m i  r_ i t , i = 1 .. n / Sum m i , i = 1 .. n

R = i = 1

n

mi r i

i = 1

n

mi

diff (174), t, t

R
..

= i = 1

n

mi r
..

i

i = 1

n

mi

Substituting the expression (173), including 
i = 1

n

mi =  and multiplying by 

mu  subs (173),
i = 1

n

mi = M, (175)



(82)(82)

(97)(97)

(103)(103)

(176)(176)

(27)(27)

(177)(177)

(50)(50)

(111)(111)

(179)(179)

o. o. 

(178)(178)

(88)(88)

(133)(133)

 R
..

=
 

i = 1

n

f i, ext

M

Renaming 
i = 1

n

f i, ext = Fext  as the total external force acting upon the system, 

subs rhs (176) = F_ ext , (176)

 R
..

= Fext

 
which is the expected result.

Problem
Show that :

a) The total linear momentum P satisfies P
.

= Fext

b) The total torque N = L
.
 satisfies N =

i = 1

n

r i f i, ext

Solution

restart;
with Physics:-Vectors :
CompactDisplay r_, l_, p_, R_, L_, N_, P_ t

r t  will now be displayed as r

l t  will now be displayed as l

p t  will now be displayed as p

R t  will now be displayed as R

L t  will now be displayed as L

N t  will now be displayed as N

P t  will now be displayed as P

a) The total linear momentum is defined as P =
i = 1

n

pi . Starting from (173) derived in the previous 

problem
(173)

i = 1

n

mi r
..

i =
i = 1

n

f i, ext

The summand can be written as mi r
..

i = mi v
.
i t = p

.
i t

subs diff r_ i t , t, t  = 
diff p_ i t , t

m i
, (173)
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i = 1

n

p
.
i =

i = 1

n

f i, ext

Factoring out 
d
dt

 gives

subs
i = 1

n

diff p_i t , t = %diff
i = 1

n

p_i t , t , (180)

d
dt i = 1

n

pi =
i = 1

n

f i, ext

subs
i = 1

n

pi t = P_ t , 
i = 1

n

f i, ext = F_ ext , (181)

dP
dt

= Fext

_______________________________________

b) From (68), the angular momentum of the ith  particle is given by 
subs L_ = l_ i , r_ = r_ i , p_ = p_ i , (65)

l i = r i pi

Differentiating, the torque of the ith  particle ni = l
.

i  is
diff (183), t

l
.

i = r
.
i pi r i p

.
i

The first term on the right-hand side is zero since r
.
i  and pi  are parallel. 

eval (184), diff r_ i t , t = 0

l
.

i = r i p
.
i

In turn, the force Fi  acting on the ith  particle is given by (168)
F_ i = (168)

Fi =
j = 1

n

f i, j f i, ext

Introducing p
.
i = Fi , and the expression of Fi  into the expression for l

.

i
subs diff p_ i t , t  = F_ i , (186), (185)

l
.

i = r i
j = 1

n

f i, j f i, ext

The same way the total angular momentum is defined as L =
i = 1

n

l i , the total torque N =
i = 1

n

ni  is the sum 

of this expression over n particles
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map Sum, subs diff l_ i t , t  = n_ i , (187) , i = 1 ..n

i = 1

n

ni =
i = 1

n

r i
j = 1

n

f i, j f i, ext

expand (188)

i = 1

n

ni =
i = 1

n

r i
j = 1

n

f i, j
i = 1

n

r i f i, ext

The left-hand side is, by definition, the total torque 
i = 1

n

ni = N . On the right-hand side, the first sum is 

equal to 0 due to Newton's 3rd  law: for each term with f i, j  in the the double sum ( i j) there is another 

term with f j, i = f i, j
N_ = expand subs f_ i, j = 0, rhs (189)

N =
i = 1

n

r i f i, ext

 

Static: reactions of planes and tensions on cables

Problem
A bar AB of weight w and length L has one extreme on a horizontal plane and the other on a vertical 
place, and is kept in that position by two cables AD and BC. The bar forms an angle  with the horizontal
plane and its projection BC over this plane forms an angle  with the vertical plane. The cable BC is on 
the same vertical plane as the bar. 

Determine the reactions of the planes at A and B as well as the tensions on the cables.

Solution
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3. 3. 
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1. 1. 
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There are two equations that contain information about the state of equilibrium of a system. The first one 
states that the center of mass of the body is not accelerated as long as the sum of the forces acting on the 
body are equal to zero. The second one states that the rotation of the body around its center of masses is 
unchanging (if it is not rotating then it stays that way) as long as the sum of the moments of the forces 
acting on the body (that is, the total torque) is zero. These two equations involve the reactions of the planes
and the tensions on the cables, so from them we can obtain the solution to the overall problem. There is no 
friction so it is also clear that the reactions RA and RB are perpendicular to the planes, as shown in the 

figure, and the tensions TA and TB on the cables have direction AD and BC, respectively.

The steps to solving this problem are:

Determine each force F acting on the bar as well as its application point r .

Equate the sum of the forces F  to zero.

Equate the sum of the moments r F to zero.

Solve these two vectorial equations for RA, RB, TA, and TB, representing the reactions of the planes at
the points of contact A and B and the tensions of the cables attached to the bar at A and B, 
respectively.

restart :
with Physics:-Vectors :

The forces acting on the bar are its weight w  and the reactions and tensions  RA, RB, TA, and TB. So the 
two equilibrium equations are
 eq 1   w_  R_ A   R_ B   T_ A   T_ B  = 0

eq1 w RA RB TA TB = 0

eq 2   r_ w w_  r_ A R_ A   r_ B R_ B   r_ A T_ A   r_ B T_ B  = 0 
eq2 r w w r A RA r B RB r A TA r B TB = 0

where, in the input above, to enter the cross products you can use &x or the operator from the palette of 
Common Symbols. Set the origin and orientation of the reference system to project these vectors; any 
choice will do, but a good one will simplify the algebraic manipulations. We will set the origin at the point
B, with the vertical z axis in the direction of the reaction RB such that r B = 0, the y axis in the direction of 

RA, and the x axis in the remaining direction, anti-parallel to TA. With these choices, the vectors entering
eq1  and eq2  are projected as follows 
R_ B   abs R B _k 

RB RB  k

where RB  represents the norm of RB , to be determined
r_ B   0 

r B 0

R_ A   abs R A _j 
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RA RA  j

and where RA  is also to be determined. This reaction RA is applied to the bar at A, represented by r A ; its 
component along the x axis is obtained by projecting the segment BA onto the horizontal plane (
L cos ), resulting in BC, and then onto the intersection of the two planes
r_ A   L cos alpha cos beta  _i  sin 2 Pi  beta  _j   L sin alpha _k 

r A L cos  sin  j L cos  cos  i L sin  k

For the other vectors we have
T_ A    abs T A _i 

TA TA  i

T_ B   abs T B  cos beta  _i  abs T B  sin 2 Pi  beta _j 
TB TB  cos  i TB  sin  j

where TA  and TB  are to be determined
w_  abs w  _k 

w w  k

r_ w   
r_ A

2
 

r w
L cos  sin  j

2
L cos  cos  i

2
L sin  k

2
The two equilibrium equations now appear as
eq 1  

w  k RA  j RB  k TA  i TB  cos  i TB  sin  j = 0

eq 2  
L cos  sin  w  i

2
L cos  cos  w  j

2
L sin  RA  i

L cos  cos  RA  k L sin  TA  j L cos  sin  TA  k = 0

These two vectorial equations represent a system of six equations which can be obtained by equating each 
of the coefficients of i , j , and k  in each of the equations to zero; that is, taking the components of the 
vectorial equations along each axis
Eq 1, 2, 3   seq Component lhs eq 1 , n  = 0, n = 1 ..3  

Eq1, 2, 3 TA TB  cos = 0, RA TB  sin = 0, w RB = 0

Eq 4, 5, 6   seq Component lhs eq 2 , n  = 0, n = 1 ..3  

Eq4, 5, 6
L cos  sin  w

2
L sin  RA = 0,

L cos  cos  w
2

L sin  TA

= 0, L cos  cos  RA L cos  sin  TA = 0

So the system of equations to be solved is
sys  Eq 1, 2, 3 , Eq 4, 5, 6  
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sys
L cos  cos  w

2
L sin  TA = 0, L cos  cos  RA

L cos  sin  TA = 0,
L cos  sin  w

2
L sin  RA = 0, w RB = 0,

RA TB  sin = 0, TA TB  cos = 0

The unknowns are
var  abs R A , abs R B , abs T A , abs T B  

var RA , RB , TA , TB

and the solution is
solve sys, var  

RA =
cos  w  sin

2 sin
, RB = w , TA =

cos  w  cos
2 sin

, TB =
cos  w
2 sin

 

Lagrange equations

restart; 
with Physics:-Vectors :
CompactDisplay r_, v_ t  

r t  will now be displayed as r

v t  will now be displayed as v

In the case of a closed system, or a system in a constant external field, the equations of motions can also be
derived from the knowledge of the kinetic energy T and the potential energy U . For this purpose, 
construct the Lagrange function L = T U and derive the equations of motion as the Lagrange equations 
for L.

For closed systems, the potential energy U r i is related to the force acting on each particle by the 

equation Fi =
i

U r 1, ..., r n . Formally, 
i r i

 is the gradient operator in the basis onto 

which r i  is projected, and with respect to its coordinates - say in Cartesian basis and coordinates 

i
= i

 xi
 j

 yi
k

 zi
 .

The kinetic energy - say T - of a single particle is given by

T  
m v_ t 2

2

T
m v

2

2
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Since the kinetic energy T is additive, a system of n particles has

T  %sum
m v_ i t 2

2
, i = 1 ..n

T
i = 1

n m vi

2

2

where vi  is the velocity of the ith particle. Generally speaking, the potential energy U r 1, ..., r n  of the 
system is a function of the coordinates r i  of the n particles, and the Lagrangian is defined as
L = T U r 1, ..., r n

L =
i = 1

n m vi

2

2
U r 1, ..., r n

The potential energy U r i is related to the force acting on each particle by the equation 

Fi =
i

U r 1, ..., r n . Formally, 
i r i

 is the gradient operator in the basis onto which r i  is 

projected. Knowing the Lagrangian, we can derive the (Lagrange) equations of motion as
%diff %diff L, v_ i , t  = %diff L, r_ i

t
dL
dvi

=
dL
dr i

 

Motion of a pendulum

Problem
Determine the Lagrangian and equation of motion of a plane pendulum with a mass m at its extremity and 
a suspension point which:
a) Moves uniformly over a vertical circumference with a constant frequency .
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b) Oscillates horizontally on the plane of the pendulum according to x = cos  t .
c) Is fixed ( = 0). Integrate the equation of motion for small oscillations.
Solution

restart :
with Physics:-Vectors :
with Physics, LagrangeEquations :

a) The Lagrangian is defined as 
L  T  U 

L T U
where T and U  are the kinetic and potential energy of the system, which in this case is constituted by a 
single point of mass m. The potential energy U is the gravitational energy
U  m g y

U m g y

where g is the gravitational constant and the y axis is chosen to be along the vertical, pointing downwards,
resulting in the gravitational force Fg = mg j . The kinetic energy is

T  
1
2

 m v_ . v_  

T
m v 2

2

To compute this velocity, the position vector r  of the suspension point of the pendulum,
r_  x _i  y _j 

r x i y j

must be determined. Choosing the x axis to be along the horizontal and the origin of the reference system 
at the center of the circle (see figure above), the x and y coordinates are given by
parametric_equations  x = a cos  t   l sin t , y = a sin  t l cos t  

parametric_equations x = a cos  t l sin t , y = a sin  t l cos t
CompactDisplay parametric_equations  

t  will now be displayed as 
r_  eval r_, parametric_equations  

r a cos  t l sin  i a sin  t l cos  j
v_  diff r_, t  

v a  sin  t l 
.
 cos  i a  cos  t l 

.
 sin  j

T

m a  sin  t l 
.
 cos

2
a  cos  t l 

.
 sin

2

2

This expression contains products of trigonometric functions, so it can be simplified by combining these 
products.
combine T, trig  
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m 
. 2

 l2 2 
.
 a l  sin  t a2 

2

2

For the gravitational energy, expressed in terms of the parametric equations of the point of mass m, we 
have
U  eval U, parametric_equations  

U m g a sin  t l cos

So the requested Lagrangian is
L  combine L, trig  

L sin  t  
.
 a l m 

. 2
 l2 m
2

a2 m 
2

2
cos  g l m sin  t  a g m

Taking into account that the Lagrangian of a system is defined up to a total derivative with respect to t, we 

can eliminate the two terms 
m a2 

2

2
 and m g a sin  t that can be rewritten as total derivatives

L  subs
2

= 0, sin  t = 0, L

L sin  t  
.
 a l m 

. 2
 l2 m
2

cos  g l m

The equation of motion is Lagrange's equation for 
LagrangeEquations L,  

l m cos  t  a 
2 ..

 l sin  g = 0

_______________________________________

b) The steps are the same as in part a) but for the expression of the y coordinate, which for this part b) is
 parametric_equations 2  y = l cos t  

parametric_equations x = a cos  t l sin , y = l cos
From which
r_  eval x _i  y _j, parametric_equations

r a cos  t l sin  i l cos  j
v_  diff r_, t  

v a  sin  t l 
.
 cos  i

.
 sin  j  l

T  
1
2

 m v_  .  v_  

T
m a  sin  t l 

.
 cos

2
sin

2
 
. 2

 l2

2
U  eval m g y, parametric_equations  

U cos  g l m
The Lagrangian is
L  combine T  U, trig  
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L
sin  t  

.
 a l m 

2
sin  t  

.
 a l m 

2
cos 2  t  a2 m 

2

4

. 2
 l2 m
2

a2 m 
2

4
cos  g l m

Discarding total derivatives, 
L  subs

2
= 0, cos 2  t = 0, L  

L
sin  t  

.
 a l m 

2
sin  t  

.
 a l m 

2

. 2
 l2 m
2

cos  g l m

The equation of motion is
LagrangeEquations L,  

l m cos  t  a 
2

cos  t  a 
2

2 
..
 l 2 sin  g

2
= 0

_______________________________________

c) Taking = 0 in the parametric equations of the problems a) or b), we get
parametric_equations  eval parametric_equations, = 0  

parametric_equations x = a l sin , y = l cos
For simplicity, and without loss of generality, translate the origin of the system of references by a  in the x 
direction 
parametric_equations  eval parametric_equations, a = 0  

parametric_equations x = l sin , y = l cos
The next steps are the same as before
r_  eval x _i  y _j, parametric_equations

r l sin  i l cos  j
v_  diff r_, t  

v
.
 cos  i  l

.
 sin  j  l

T  
1
2

 m v_  .  v_  

T
m 

. 2
 cos

2
 l2 sin

2
 
. 2

 l2

2
T  simplify T

T
. 2

 l2 m
2

L  T U

L
. 2

 l2 m
2

cos  g l m

The equation of motion is
LagrangeEquations L,  
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..
 l2 m sin  g l m = 0

When the oscillation angle  is small, expanding in series up to first order in 
series sin , , 2  

O
3

the equation of motion is
subs sin t = t , (242)  

..
 l2 m  g l m = 0

For generic initial conditions,
t0 = 0, %eval diff phi t , t , t = t0 = 0 

t0 = 0,
.

t = t0

= 0

we get
dsolve (244), (245)

=

g  sin
g  t0

l
 0 l  cos

g  t0
l

 0  sin
g  t

l

g

0 g  cos
g  t0

l 0 l  sin
g  t0

l
 cos

g  t

l

g
 

Conservation laws

Work
By definition, the work performed by a force F to move a particle an infinitesimal amount dr  is F dr . 
Thus, the work to move it from A to B along some path C is 

A

B
 F  . dr

path = C
Problem

A particle is submitted to a force whose Cartesian components are given by Fx = a x3 b x y2 c z,  

Fy = a y3 b x y2,  Fz = c z . Calculate the work done by this force when moving the particle along a 
straight line from the origin to a point (x0, y0, z0 ).

Solution



(82)(82)

(195)(195)

(180)(180)

(97)(97)

(253)(253)

(103)(103)

(176)(176)

(27)(27)

(252)(252)

(232)(232)

2. 2. 

(50)(50)

3. 3. 

(249)(249)

(111)(111)

(250)(250)

(247)(247)

(205)(205)

(251)(251)

o. o. 

(248)(248)

(222)(222)

(242)(242)

1. 1. 

(88)(88)

(133)(133)

The work to be calculated is equal to the line integral of the force along the path (line) indicated. The steps 
to solve this problem are:

Determine the vectorial (parameter t) equation r t  of the line over which we are going to integrate.

Express x, y, and z entering the components of F in terms of the components of r t , after which the

scalar product F d r  becomes  F t r
.

t  dt and the work can be expressed as 
0

t
F v dt.

Compute the integral.

The same computation can be done in one go by asking the computer to compute the line integral (see at 
the end).

restart :
with Physics:-Vectors :

The work to be calculated is given by
W  Int F_.v_, t = 0 ..t  

W
0

t
F v dt

The force acting on the particle is
F_  a x3  b x y2  c z _i  a x3  b x y2 _j  c z _k

F a x3 b x y2 c z  i a x3 b x y2  j c z k
The vectorial equation of a line r   r t , where t is a parameter, is represented by the vector position of 
any of its points. This line passes through the origin and a generic point 
r_ 0   x0 _i  y0 _j  z0  _k 

r 0 x0 i y0 j z0 k

In this case, r t  can be written directly as the product of a parameter t and r 0
r_  t  r_ 0  

r t x0 i y0 j z0 k

To construct the scalar product F d r , first express F in terms of the vectorial equation of this line; that 
is, x, y, and z entering its components shall be taken from the components of the equation above for  r
x = Component r_, 1 , y = Component r_, 2 , z = Component r_, 3  

x = t x0, y = t y0, z = t z0

F_  eval F_, (251)   
F a t3 x0

3 b t3 x0 y0
2 c t z0  i a t3 x0

3 b t3 x0 y0
2  j c t z0 k

Now compute v = r
.

t
v_  diff r_, t  

v x0 i y0 j z0 k

So the line integral for the work W is now



(82)(82)

(195)(195)

(180)(180)

(254)(254)

(97)(97)

(261)(261)

(259)(259)

(103)(103)

(176)(176)

(27)(27)

(232)(232)

(50)(50)

(262)(262)

(257)(257)

(111)(111)

(258)(258)

(260)(260)

(205)(205)

o. o. 

(255)(255)

(256)(256)

(222)(222)

(242)(242)

(88)(88)

(133)(133)

W

0

t
a t3 x0

4 a t3 x0
3 y0 b t3 x0

2 y0
2 b t3 x0 y0

3 c t x0 z0 c t z0
2 dt

At the origin, t = 0 , and when the particle is at r 0  we have t = 1, so the value of W to move the particle to 
r 0  is
eval W, t = 1  

0

1
a t3 x0

4 a t3 x0
3 y0 b t3 x0

2 y0
2 b t3 x0 y0

3 c t x0 z0 c t z0
2 dt

value (255)
1
4

 a x0
4 1

4
 a x0

3 y0
1
4

 b x0
2 y0

2 1
4

 b x0 y0
3 1

2
 c x0 z0

1
2

 c z0
2

The same computation can be done in one go by asking the system to compute the line integral directly. 
Two different ways of performing this computation are:

First, the parametric equations of the line that goes from 0 to x0 i y0 j z0 k  are
C  x = t x0, y = t y0, z = t z0  

C x = t x0, y = t y0, z = t z0

This parametrization can also be computed using ParametrizeCurve line 0, x0, y0, z0 . The force is 
as shown in (248)
F_

a t3 x0
3 b t3 x0 y0

2 c t z0  i a t3 x0
3 b t3 x0 y0

2  j c t z0 k

The integration limits are
A_  0; 
B_  x0 i y0 j z0 k

A 0

B x0 i y0 j z0 k

So this is the integral we want to compute
Int 'F_, dr_ = A_ .. B_ ', path = C  

A

B
F dr

path = x = t x
0

, y = t y
0

, z = t z
0

value (260)
1
4

 a x0
4 1

4
 a x0

3 y0
1
4

 b x0
2 y0

2 1
4

 b x0 y0
3 1

2
 c x0 z0

1
2

 c z0
2

This is the same result (256) achieved interactively while performing one step at a time
(261) (256)

0



(82)(82)

(195)(195)

(264)(264)

(180)(180)

(97)(97)

(265)(265)

(266)(266)

(103)(103)

(176)(176)

(27)(27)

(232)(232)

(50)(50)

(111)(111)

(263)(263)

(205)(205)

o. o. 

(222)(222)

(242)(242)

(88)(88)

(133)(133)

Since the path is a straight line connecting A and B, the following line integral can also be entered 
Int 'F_, dr_ = A_ .. B_, path = line A_, B_ '

A

B
F dr

path = line A, B

value (263)
1
4

 a x0
4 1

4
 a x0

3 y0
1
4

 b x0
2 y0

2 1
4

 b x0 y0
3 1

2
 c x0 z0

1
2

 c z0
2

 

Conservation of the total energy of a closed system or system in a constant 
external field

Problem
Consider a closed system, or a system in a constant external field, for which the total force acting on the
ith particle of the system can be derived from a potential, Fi =

i
 U . Show that the total energy of the 

system is conserved.

Solution

restart :
with Physics:-Vectors :
CompactDisplay x, y, z, v_, F_ t :

x t  will now be displayed as x

y t  will now be displayed as y

z t  will now be displayed as z

v t  will now be displayed as v

F t  will now be displayed as F

For these systems, the kinetic and potential energies T and U respectively depend on the time t only 
through the velocity vi t  and r i t . The total energy E = T U  expressed here as a function of the time 
(only through vi t  and r i t ) for the purpose of showing that the total energy of a closed system is 
constant.
E t  = T t   U t

E t = T t U t
Since the kinetic energy T is additive, without loss of generality, to perform the computation we consider 
here the case of a system of one particle. Substituting T and U as functions of the velocity and the 
coordinates, we have

subs T t  = 
1
2

m v_ t  . v_ t , U t = U x t , y t , z t , (266)



(82)(82)

(195)(195)

(180)(180)

(97)(97)

(272)(272)

(103)(103)

(176)(176)

(27)(27)

(271)(271)

(232)(232)

(269)(269)

(273)(273)

(50)(50)

(274)(274)

(111)(111)

(268)(268)

(275)(275)

(205)(205)

o. o. 

(276)(276)

(222)(222)

(270)(270)

(242)(242)

(267)(267)

(88)(88)

(133)(133)

E t =
m v 2

2
U x, y, z

Taking the total derivative with respect to time
diff (267), t

E
.

t = m v
.

v D1 U x, y, z  x
.

D2 U x, y, z  y
.

D3 U x, y, z  z
.

From Newton's 2nd law,

diff v_ t , t =
F_ t

m
 

v
.

=
F
m

subs (269), (268)  

E
.

t = m 
F
m

v D1 U x, y, z  x
.

D2 U x, y, z  y
.

D3 U x, y, z  z
.

In turn, in view of F = U , compute U
Gradient = %Gradient U x t , y t , z t  

D1 U x, y, z  i D2 U x, y, z  j D3 U x, y, z  k = U x, y, z

The position vector is
r_  x t _i  y t _j z t _k 

r x i y j z k

from where U v  , expressed on the left-hand side in terms of  r
.

t  is equal to
lhs (271) . diff r_, t  = rhs (271)  . v_ t

D1 U x, y, z  x
.

D2 U x, y, z  y
.

D3 U x, y, z  z
.

= U x, y, z v

Simplifying E
.

t  given in (270) using this expression (273) (alternatively, use algsubs)
simplify (270), (273)

E
.

t = F v U x, y, z v
Finally, from
%Gradient U x t , y t , z t  = F_ t

U x, y, z = F
eval (274), (275)

E
.

t = 0
 
which is the expected result: the total energy of a closed system is conserved.

Problem
 Consider a system of n particles in two reference systems K and K'  that move relative to each other with 
constant velocity V. Show that the relation between the energies of the system, E and E', is given by

E = E'
1
2

 V
2
 

a = 1

n

ma V P'

Solution



(82)(82)

(195)(195)

(180)(180)

(280)(280)

(278)(278)

(97)(97)

(279)(279)

(103)(103)

(176)(176)

(27)(27)

(277)(277)

(232)(232)

(50)(50)

(111)(111)

(282)(282)

(281)(281)

(205)(205)

o. o. 

(222)(222)

(242)(242)

(267)(267)

(88)(88)

(133)(133)

restart;
with Physics:-Vectors :

The energy E of the system, measured in K, is given by 

E = 
1
2

Sum m a  v_ a 2,  a = 1 .. n   U

E = a = 1

n

ma va

2

2
U

where U is the potential energy. From the composition of velocities, va  in K is related to v'a  in K'  by
v_ a  = V_  v '_ a

va = V v'a
subs (278), (277)

E = a = 1

n

ma V v'a
2

2
U

Expanding the power and the Sum all at once
expand (279)

E =
V

2
 

a = 1

n

ma

2
V

a = 1

n

ma v'a
a = 1

n

ma v'a
2

2
U

Introducing the total momentum 
a = 1

n

ma v'a = P'  (copy from (280) and paste in the next input line)

subs
a = 1

n

ma v'a = P '_, (280)

E =
V

2
 

a = 1

n

ma

2
V P' a = 1

n

ma v'a
2

2
U

The remaining term of (280) that involves v'a  adds with U  to represent the total energy E'  in the the 

system K '

simplify (281), a = 1

n

ma Norm v'_a
2

2
U = `E'`

E = E'
V

2
 

a = 1

n

ma

2
V P'



(82)(82)

(195)(195)

(180)(180)

(97)(97)

(103)(103)

(176)(176)

(27)(27)

(284)(284)

(232)(232)

(50)(50)

(283)(283)

(111)(111)

(205)(205)

o. o. 

(285)(285)

(222)(222)

(242)(242)

(267)(267)

(88)(88)

(133)(133)

 

This is already the expected result. If the system is at rest in K', then P' = 0, E = E '
V

2
 

a = 1

n

ma

2
,

and E '  represents the system's internal energy.

Conservation of the total momentum of a closed system

The conservation of the total momentum of a closed system of one particle is clear: if the particle does not 
interact with anything external, the force acting on it is zero, and from Newton's 2nd law F = p

.
t  follows 

p
.

t = 0. 

For a closed system of many particles, while the total force acting on the system is equal to 0, there can be 
internal forces different from zero acting on each particle due to its interaction with the other particles. 
These internal forces, however, produce no acceleration of the system; in general, they cancel each other 
out due to Newton's 3rd law.

Problem
Consider a system of n particles measured in two frames of reference K and K'  that move relative to each 

other with velocity V. Show that the system's momenta P and P
 '
 are related by 

P = P
 '

V 
a = 1

n

ma .

Solution

restart;
with Physics:-Vectors :

The momentum P of the system, measured in K, is given by 
P_ = Sum m a  v_ a ,  a = 1 .. n

P =
a = 1

n

ma va

From the composition of velocities, va  in K is related to v'a  in K'  by
v_ a  = V_  v '_ a

va = V v'a
subs (284), (283)

P =
a = 1

n

ma V v'a

expand (285)



(82)(82)

(195)(195)

(287)(287)

(180)(180)

(97)(97)

(103)(103)

(176)(176)

(289)(289)

(27)(27)

(286)(286)

(232)(232)

(50)(50)

(111)(111)

(288)(288)

(205)(205)

o. o. 

(222)(222)

(242)(242)

(267)(267)

(88)(88)

(133)(133)

P = V 
a = 1

n

ma
a = 1

n

ma v'a

Introducing  
a = 1

n

ma v'a = P'

subs
a = 1

n

ma v'a = P', (286)

P = V 
a = 1

n

ma P'

 
which is the desired relationship between P and P' .

Problem
A particle of mass m moving with velocity v1  leaves a half-space in which its potential energy is a 
constant U1  and enters another in which its potential energy is a different constant U2 . Determine the 

change in direction of motion of the particle; that is, 
sin 1

sin 2

 where 1  and 2  are the angles between an 

axis perpendicular to the separating plane and the momentum p  in the regions 1 and 2.

Solution

restart :
with Physics:-Vectors : 

Consider a Cartesian frame with the axis z perpendicular to the plane that divides the two regions. Call 
p1 and p2  the momentum above and below the plane, call 1 the angle between p1  and the z vertical axis 

and 2  the angle between p2  and that same axis. 

In this reference system, the potential energy U  depends only on z, with constant values U1  and U2  

above and below the separating plane such that 0 =
U
x

=
U
y

. Therefore, the x and y components of the

momentum are conserved. For simplicity we orient the y axis so that the component of the momentum in 
that direction is (and remains) zero. We have for p1  and p2

p1_ = Norm p1_ sin 1 _i Norm p1_ cos 1 _k

p1 = p1  sin 1  i p1  cos 1  k

p2_ = Norm p2_ sin 2 _i Norm p2_ cos 2 _k 

p2 = p2  sin 2  i p2  cos 2  k

The projection of  p1  and p2  over the plane is conserved, so
rhs (288)  = rhs (289) . _i 



(82)(82)

(195)(195)

(180)(180)

(97)(97)

(291)(291)

(296)(296)

(103)(103)

(176)(176)

(27)(27)

(286)(286)

(290)(290)

(293)(293)

(232)(232)

(50)(50)

(294)(294)

(111)(111)

(295)(295)

(205)(205)

o. o. 

(222)(222)

(242)(242)

(292)(292)

(267)(267)

(88)(88)

(133)(133)

p1  sin 1 = p2  sin 2

Rewrite (290) as the ratio of sines we want to determine
isolate (290), sin 1

sin 2

sin 1

sin 2

=
p2

p1

The total energy E = T U  above and below the plane that separates the two regions is also conserved, 
so

Norm p1_
2

2 m
  U1 =

Norm p2_
2

2 m
  U2 

p1
2

2 m
U1 =

p2
2

2 m
U2

We can use (292) to eliminate the value of the momentum in one of the two regions by first squaring (291)
(291)2 

sin 1
2

sin 2
2 =

p2
2

p1
2

Now simplify (293) by using (292) to eliminate the norm of - say - p2
simplify (293), (292) , Norm p2_

sin 1
2

sin 2
2 =

p1
2 2 m U1 U2

p1
2

Collecting m  and p1

collect (294), m,
1

Norm p1_
2

sin 1
2

sin 2
2 = 1

2 U1 2 U2  m

p1
2

By computing the square root of each side of (295) while taking into account that 
sin 1 0, sin 2 0, we get the change of direction of the particle when it passes through the 
plane that separates the two regions as a function of the jump U1 U2  of the potential energy and the 
absolute value of momentum p1

map sqrt, (295)  assuming sin 1 0, sin 2 0 

sin 1

sin 2

= 1
2 U1 2 U2  m

p1
2



(82)(82)

(195)(195)

(298)(298)

(180)(180)

(97)(97)

(103)(103)

(176)(176)

(27)(27)

(297)(297)

(286)(286)

(290)(290)

(232)(232)

(50)(50)

(111)(111)

(205)(205)

o. o. 

(222)(222)

(242)(242)

(267)(267)

(88)(88)

(133)(133)

 

Conservation of angular momentum

Like the conservation of linear momentum, the conservation of the total angular momentum of a closed 
system of one particle is natural: if the particle does not interact with anything external, the force acting on 

it is zero and therefore its torque N = r F = 0. From L
.

= N  it follows that L
.

= 0, that is, the angular 
momentum L is conserved. 

Problem
a) Express the Cartesian components of the angular momentum L , as well as its norm, in cylindrical and 
spherical coordinates. 
b) Rewrite L  in cylindrical coordinates and using the cylindrical orthonormal basis of unit vectors, then do
the same using spherical coordinates and the spherical basis. 

Solution

restart;
with Physics:-Vectors :

a) It is simpler to work with vectorial expressions so as to accomplish the transformation of the three 
Cartesian components at once.

First set a compact display for all the coordinates as functions of t
CompactDisplay x, y, z, , , r, , _ , _ , _ t

x t  will now be displayed as x

y t  will now be displayed as y

z t  will now be displayed as z

t  will now be displayed as 

t  will now be displayed as 

r t  will now be displayed as r

t  will now be displayed as 

t  will now be displayed as 

t  will now be displayed as 

t  will now be displayed as 
The angular momentum,
L_ = r_ p_

L = r p
The position in Cartesian coordinates,
r_ = x t  _i  y t  _j  z t  _k



(82)(82)

(195)(195)

(180)(180)

(97)(97)

(306)(306)

(303)(303)

(305)(305)

(103)(103)

(176)(176)

(302)(302)

(27)(27)

(286)(286)

(290)(290)

(232)(232)

(301)(301)

(299)(299)

(50)(50)

(304)(304)

(309)(309)

(307)(307)

(111)(111)

(205)(205)

o. o. 

(308)(308)

(222)(222)

(242)(242)

(300)(300)

(267)(267)

(88)(88)

(133)(133)

r = x i y j z k
Assume m 0  

m:: 0,
The momentum:
p_ = m diff rhs (299) , t

p = m x
.
 i y

.
 j z

.
 k

from which
subs (299), (301), (298)

L = x i y j z k m x
.
 i y

.
 j z

.
 k

Performing the cross product
(302)

L = m y z
.

z y
.

 i m z
.
 x z x

.
 j m y x

.
y
.
 x  k

To combine the two steps into one, in (302) use eval instead of subs. The simplest approach to expressing 
the Cartesian components of (303) in cylindrical coordinates is to use the ChangeCoordinates  command
ChangeCoordinates (302), cylindrical
L = m z  cos  

.
sin  z

.
 z 

.
 i m  sin  

.
 z cos  z

.
 z 

.
 j m 

.
 

2
 k

So for instance Lx = L i
(304) . _i 

L i = m z  cos  
.

sin  z
.
 z 

.

For the square of the norm of L
Norm (304) 2

L
2

= m2 z  cos  
.

sin  z
.
 z 

. 2
m2  sin  

.
 z cos  z

.
 

z 
. 2

m2 
. 2

 
4

simplify (306)

L
2

= m2 z2 
2 4

 
. 2

z 
.

z
.
 

2

_______________________________________

b) To rewrite the expression (302) of L  in the cylindrical orthonormal basis and using cylindrical 
coordinates, use ChangeBasis  with the optional argument alsothecoordinates
lhs (302)  = ChangeBasis rhs (302) , cylindrical, also   

* Partial match of 'also' against keyword 'alsothecoordinates' 

L = m 
.
  z m z 

.
z
.
  m 

.
 

2
 k

Naturally, the norm of L  is the same regardless of the orthonormal basis in which the vector is expressed
Norm (308) 2

L
2

= m2 
. 2

 
2
 z2 m2 z 

.
z
.
 

2
m2 

. 2
 

4

Compare with (307)



(82)(82)

(195)(195)

(310)(310)

(180)(180)

(97)(97)

(311)(311)

(316)(316)

(103)(103)

(176)(176)

(27)(27)

(286)(286)

(290)(290)

(232)(232)

(299)(299)

(50)(50)

(315)(315)

(111)(111)

(205)(205)

o. o. 

(312)(312)

(314)(314)

(222)(222)

(242)(242)

(313)(313)

(267)(267)

(88)(88)

(133)(133)

simplify (307) (309)
0 = 0

_______________________________________

The steps in spherical coordinates are the same. 

a) 
ChangeCoordinates (302), spherical  
L = r2 m sin  cos  cos  

. .
 sin  i r2 m sin  cos  sin  

.

.
 cos  j r2 m cos

2
1  

.
 k

(311) . _i 
L i = r2 m sin  cos  cos  

. .
 sin

Norm (311) 2

L
2

= r4 m2 sin  cos  cos  
. .

 sin
2

r4 m2 sin  cos  sin  
.

.
 cos

2
r4 m2 

. 2
 sin

4

simplify (313)

L
2

= r4 m2 cos
2

1  
. 2 . 2

_______________________________________

b)
lhs (302)  = ChangeBasis rhs (302) , spherical, also   

* Partial match of 'also' against keyword 'alsothecoordinates' 

L = m r2 
.
 sin  m r2  

.

Norm (315) 2

L
2

= m2 r4 
. 2

 sin
2

m2 r4 
. 2

 

Problem
Consider a system of n particles measured in two frames of reference K and K' whose origins have 

distance A from each other. Show that the momenta L  and L
 '
 of the system are related by

 L = L
 '

A P

where P =
a = 1

n

pa  is the total momentum of the system as seen from K.

Solution

restart;
with Physics:-Vectors :

The momentum P of the system, measured in K, is given by 



(82)(82)

(195)(195)

(318)(318)

(180)(180)

(97)(97)

(103)(103)

(176)(176)

(27)(27)

(286)(286)

(290)(290)

(232)(232)

(299)(299)

(50)(50)

(321)(321)

(111)(111)

(317)(317)

(320)(320)

(205)(205)

o. o. 

(222)(222)

(242)(242)

(267)(267)

(319)(319)

(88)(88)

(133)(133)

L_ = Sum r_ a p_ a ,  a = 1 .. n

L =
a = 1

n

r a pa

The relationship between r a  and r'a  measured in K and K' is given by
r_ a  = A_  r '_ a

r a = A r'a
subs (318), (317)

L =
a = 1

n

A r'a pa

Expanding
expand (319)

L = A
a = 1

n

pa
a = 1

n

r'a pa

Since K and K' are at rest with respect to each other, v = v'  and so p = p' . Hence, 
a = 1

n

r'a pa = L ' , 

the angular momentum of the system in K'. The expression 
a = 1

n

pa = P is the linear momentum of the 

system in K (copy the sum subexpressions from (320), paste, then edit). Taking both of these into account,

subs
a = 1

n

r'a pa = L '_, 
a = 1

n

pa = P, (320)

L = A P L'
 
which is the desired relationship between L  and L ' .

Problem
a) Consider a closed system of n particles, and two frames of reference K and K'  that move relative to 

each other with a constant velocity V. Show that the momenta L  and L
 '
respectively measured in K and K'

are related by 

L =
a = 1

n

ma  R V A P' L'

where A is the distance from the origin of K to the origin of K',  R =
= 1

n

ma r a /
a = 1

n

ma  is the position of 

the center of mass as seen from K, and P'  and L'  are the total linear and angular momenta measured in K'.
b) Show that when the origin of K' is the center of mass R, this formula reduces to 

L = L' R P,

where 



(82)(82)

(195)(195)

(180)(180)

(97)(97)

(326)(326)

(327)(327)

(323)(323)

(322)(322)

(103)(103)

(324)(324)

(176)(176)

(27)(27)

(286)(286)

(290)(290)

(232)(232)

(328)(328)

(299)(299)

(50)(50)

(111)(111)

(205)(205)

o. o. 

(325)(325)

(222)(222)

(242)(242)

(267)(267)

(88)(88)

(133)(133)

P =
a = 1

n

ma va  is the total linear momentum in K.

Solution

restart;
with Physics:-Vectors :

a) The momentum L  of the system measured in K is given by 
L_ = Sum r_ a p_ a ,  a = 1 .. n

L =
a = 1

n

r a pa

The right-hand side of the above can be expressed in terms of P'  and L'  using  pa = ma va , where 

va = v'a V :
p_ a  = p '_ a m a V_

pa = ma V p'a
subs (323), (322)

L =
a = 1

n

r a ma V p'a

ee  expand (324)

ee L = V
a = 1

n

ma r a
a = 1

n

r a p'a

The term with 
a = 1

n

ma r a  can be expressed in terms of the position vector of the center of mass R (copy 

the subexpression from (325) , paste, then edit)

subs
a = 1

n

ma r a =
a = 1

n

ma  R_, (325)

L = V
a = 1

n

ma  R
a = 1

n

r a p'a

To express 
a = 1

n

r a p'a  in terms of L'  and A, introduce the relation between r a  and r'a
r_ a  = A_  r '_ a

r a = A r'a
subs (327), (326)

L =
a = 1

n

ma  V R
a = 1

n

A r'a p'a



(82)(82)

(195)(195)

(333)(333)

(330)(330)

(180)(180)

(97)(97)

(103)(103)

(329)(329)

(176)(176)

(331)(331)

(27)(27)

(286)(286)

(290)(290)

(232)(232)

(299)(299)

(50)(50)

(111)(111)

(332)(332)

(205)(205)

o. o. 

(222)(222)

(242)(242)

(267)(267)

(88)(88)

(133)(133)

expand (328)

L =
a = 1

n

ma  V R A
a = 1

n

p'a
a = 1

n

r'a p'a

On the right-hand side, two of the sums represent P'  and L'  (copy the sum subexpressions, paste into the 
next line, then edit)

subs
a = 1

n

r'a p'a = L '_,
a = 1

n

p'a = P '_, (329)

L =
a = 1

n

ma  V R A P' L'

This is already the desired result.
_______________________________________

b) If the origin of K' is the center of mass R, then A = R
subs A_ = R_, (330)

L =
a = 1

n

ma  V R R P' L'

P and P'  were related in (287)  P = V 
a = 1

n

ma P' .  This relation can be used to express L  in terms

of  P instead of P'
simplify (331), (287) , P '_

L =
a = 1

n

ma  V R R V 
a = 1

n

ma P L'

expand (332)

L = R P L'
 
which is the result we were looking for.

Cyclic coordinates

Any generalized coordinate qi  which does not appear explicitly in the Lagrangian is called cyclic. To any
cyclic coordinate corresponds a conserved quantity. From

d
dt

 L
 q
.
i

=
 L
 qi

when qi  is cyclic, the right-hand side is 0 and so the quantity 
 L
 q
.
i

 is conserved.

Problem



(82)(82)

(195)(195)

(335)(335)

(337)(337)

(180)(180)

(97)(97)

(103)(103)

(176)(176)

(27)(27)

(286)(286)

(290)(290)

(334)(334)

(232)(232)

(299)(299)

(50)(50)

(336)(336)

(111)(111)

(338)(338)

(205)(205)

o. o. 

(222)(222)

(242)(242)

(267)(267)

(88)(88)

(133)(133)

The Lagrangian describing the movement of a particle in a central field has  as a cyclic coordinate. Using 
cylindrical coordinates, show that the corresponding conserved quantity is the z component of the angular 
momentum L

Solution

restart;
with Physics:-Vectors :

For convenience place the origin of the reference system at the center of the central field. Then the 
Lagrangian for a particle of mass m is

L t =
m
2

diff r_ t , t 2 U Norm r_

L t =
m r

.
t

2

2
U r

Two rewrite the kinetic energy in terms of cylindrical coordinates, rewrite first in those coordinates the 
position vector r
r_ t = x t _i y t _j z t _k

r t = x t  i y t  j z t  k
lhs (335) = ChangeBasis rhs (335) , cylindrical, also

* Partial match of 'also' against keyword 'alsothecoordinates' 

r t = z t  k t  t
CompactDisplay (336), L, p_, rho, _rho, phi, _phi t

L t  will now be displayed as L

t  will now be displayed as 

r t  will now be displayed as r

p t  will now be displayed as p

t  will now be displayed as 

z t  will now be displayed as z

t  will now be displayed as 

t  will now be displayed as 
One can now subs(titute) followed by evaluating the result (two steps), or do both steps in one go using
eval(uate); in which case, after substitution, the derivative of  will also be performed
eval (334), (336)

L =
m z

.
 k

.
  

.
 

2

2
U r

Computing now 
 L
 q
.
i

, the conserved quantity is

%diff lhs (338) , diff phi t , t  = diff rhs (338) , diff phi t , t



(82)(82)

(195)(195)

(180)(180)

(339)(339)

(97)(97)

(341)(341)

(103)(103)

(176)(176)

(27)(27)

(286)(286)

(290)(290)

(232)(232)

(299)(299)

(50)(50)

(111)(111)

(345)(345)

(342)(342)

(205)(205)

(340)(340)

o. o. 

(344)(344)

(343)(343)

(222)(222)

(242)(242)

(267)(267)

(88)(88)

(133)(133)

dL
d

. = m 
2
 
.

In turn, from the definition of angular momentum
L_ t = r_ t  p_ t

L t = r p
Introduce the velocity as the derivative of the position vector r , then its expression in cylindrical 
coordinates (336) r = z k  
p_ t  = m diff r_ t , t  

p = m r
.

eval (340), (341)

L t = m r r
.

eval (342), (336)

L t = m z  
.
 z 

.
 z
.

 
2
 
.
 k

To get the Component in the direction of k , you can input Component (343), 3  or directly project onto 
the z axis
(343) . _k 

L t k = m 
2
 
.

This result is the same as (339) computed differentiating the Lagrangian with respect to 
.
.

 

Integration of the equations of motion

Motion in one dimension
Problem
For a closed system, or any system where the total energy E = T U  is conserved, show the following: 
a) The trajectory in implicit form can always be computed directly from E.
b) The turning points, if any, can be computed directly from U.

Solution

restart;
with Physics :

The Lagrangian of a system with only one degree of freedom, represented by a generalized coordinate 
q t , is given by
CompactDisplay q t

q t  will now be displayed as q

L = 
1
2

a q t diff q t , t 2  U q t



(82)(82)

(195)(195)

(180)(180)

(348)(348)

(339)(339)

(97)(97)

(352)(352)

(103)(103)

(350)(350)

(176)(176)

(27)(27)

(286)(286)

(290)(290)

(232)(232)

(299)(299)

(50)(50)

(347)(347)

(111)(111)

(349)(349)

(205)(205)

o. o. 

(351)(351)

(222)(222)

(242)(242)

(346)(346)

(267)(267)

(88)(88)

(133)(133)

L =
a q  q

. 2

2
U q

a) The total energy E = T U  is
E = subs U q t  = U q t , rhs (346)

E =
a q  q

. 2

2
U q

If the total energy E is known, this is a first order differential equation for q t , whose solution can be 
written in general form as
dsolve (347)

q = RootOf 2 E 2 U _Z , t

q
a _a  2

2 a _a  E U _a
d_a c1 = 0, t

q

a _a  2

2 a _a  E U _a
d_a c1 = 0

The first solution is a singular one
(348) 1  

q = RootOf 2 E 2 U _Z
One can verify this solves the constancy of the energy E viewed as an equation of movement
odetest (349), (347)

0
This "singular" solution is however trivial: it corresponds to no movement. To see that, remove the
RootOf
DEtools:-remove_RootOf (349)

2 E 2 U q = 0
The above is true only when T = 0. The interesting solutions are the other two in (348). For positive initial
conditions (c1 0 , from the other two solutions, the one for which t 0 is the second one

t = t  (348) 2
q

a _a  2

2 a _a  E U _a
d_a c1 = t

 
This is an implicit solution expressing t t q , that includes an arbitrary constant c1  that depends on the 
initial value of q. When the integral can be computed, one could try solving the resulting expression to 
invert t q  and get an explicit solution q t .

_______________________________________

b) Since the kinetic energy T is positive, E = T  U  U , from which the movement can only take place 
in regions where U E, with turning points where U = E.

Problem
Determine the period of oscillations of a pendulum of mass m and length l in a gravitational field as a 



(82)(82)

(195)(195)

(180)(180)

(339)(339)

(357)(357)

(97)(97)

(103)(103)

(176)(176)

(27)(27)

(286)(286)

(290)(290)

(356)(356)

(232)(232)

(299)(299)

(50)(50)

(111)(111)

(353)(353)

(205)(205)

o. o. 

(354)(354)

(222)(222)

(242)(242)

(355)(355)

(346)(346)

(267)(267)

(88)(88)

(133)(133)

(358)(358)

function of the amplitude of the oscillations

Solution

restart;
with Physics :

Working with spherical coordinates automatically sets their range
Coordinates spherical

 Systems of spacetime coordinates are: X = r, , , t

X

about
Originally phi, renamed phi:
  is assumed to be: RealRange(0,2*Pi)

The energy E of a pendulum in spherical coordinates is given by
CompactDisplay phi t

t  will now be displayed as 

E = 
1
2

m l2 diff phi t , t 2 m g l cos phi t

E =
m l2 

. 2

2
m g l cos

Set ranges for m and l to enable the computation of integrals further below
Assume g 0, l 0, m 0

g:: 0, , l:: 0, , m:: 0,

Counting  starting from 
t = 0

= 0, 

dsolve (355), 0 = 0

= RootOf t

0

_Z
m 2  l

2 m m g l cos _a E
d_a , = RootOf t

0

_Z
m 2  l

2 m m g l cos _a E
d_a

Following the reasoning used in the previous problem, take the solution for which t 0, that is the 
second one
DEtools:-remove_RootOf (357) 2

t

0

m 2  l

2 m m g l cos _a E
d_a = 0

Calling 



(82)(82)

(195)(195)

(180)(180)

(339)(339)

(97)(97)

(362)(362)

(359)(359)

(103)(103)

(176)(176)

(27)(27)

(286)(286)

(360)(360)

(290)(290)

(232)(232)

(299)(299)

(50)(50)

(111)(111)

(361)(361)

(205)(205)

o. o. 

(363)(363)

(222)(222)

(242)(242)

(346)(346)

(267)(267)

(88)(88)

(133)(133)

max  the maximum value of t , the period of oscillations can be computed as the time t taken to 

go from = 0 to = max  multiplied by 4

Assume max 0

max:: 0,

isolate subs t =
T
4

, t = 0 , (358) , T

T = 4 

0

0
m 2  l

2 m m g l cos _a E
d_a

When 
.

= 0, the energy E, a constant, is equal to U max = m g l cos max

simplify subs E = m g l cos max , (360)

T =

2 2  l  

0

0
1

cos max cos _a
d_a

g
This integral can be computed in terms of the InverseJacobiAM
value (361)

T =

4 2  l  am 1 0

2
2

cos max 1

g  cos max 1

where am 1 k = InverseJacobiAM phi, k . General information on special functions can be seen 
using the FunctionAdvisor
FunctionAdvisor definition, InverseJacobiAM

am 1 k =

0

1

1 k2 sin _ 1 2
d_ 1, with no restrictions on , k

FunctionAdvisor InverseJacobiAM

InverseJacobiAM
describe

InverseJacobiAM = trigonometric form of the incomplete elliptic integral of the first kind

definition



(82)(82)

(195)(195)

(180)(180)

(339)(339)

(97)(97)

(103)(103)

(176)(176)

(27)(27)

(286)(286)

(290)(290)

(232)(232)

(299)(299)

(50)(50)

(111)(111)

(205)(205)

o. o. 

(222)(222)

(242)(242)

(346)(346)

(267)(267)

(88)(88)

(133)(133)

am 1 k =

0

1

1 k2 sin _ 1 2
d_ 1 with no restrictions on , k

classify function

Elliptic_related

symmetries

am 1 k = am 1 k

periodicity

am 1 k No periodicity

plot



(82)(82)

(195)(195)

(180)(180)

(339)(339)

(97)(97)

(103)(103)

(176)(176)

(27)(27)

(286)(286)

(290)(290)

(232)(232)

(299)(299)

(50)(50)

(111)(111)

(205)(205)

o. o. 

(222)(222)

(242)(242)

(346)(346)

(267)(267)

(88)(88)

(133)(133)

am 1 x 0.5000000000

x
16 8

3 
16 4

5 
16

3 
8

7 
16 2

  

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
trigonometric form of the incomplete elliptic integral of the first kind

am 1 z 0.5000000000



(82)(82)

(195)(195)

(180)(180)

(339)(339)

(97)(97)

(103)(103)

(176)(176)

(27)(27)

(286)(286)

(290)(290)

(232)(232)

(299)(299)

(50)(50)

(111)(111)

(205)(205)

o. o. 

(222)(222)

(242)(242)

(346)(346)

(267)(267)

(88)(88)

(133)(133)

singularities

am 1 k No isolated singularities

branch points

am 1 k

= arcsin
1
k

n n:: =

arcsin
1
k

n n:: =

 I k = csc k = csc k
=  I

special values



(82)(82)

(195)(195)

(180)(180)

(339)(339)

(97)(97)

(103)(103)

(176)(176)

(27)(27)

(286)(286)

(290)(290)

(232)(232)

(299)(299)

(50)(50)

(111)(111)

(205)(205)

o. o. 

(222)(222)

(242)(242)

(346)(346)

(267)(267)

(88)(88)

(133)(133)

am 1 k = am 1 k

am 1 k = am 1 k

am 1 0 k = 0

am 1 0 =

am 1 n 
2

k = n K k n::

am 1 k = ln sec tan 2
k

1, 1

am 1 k = 0 k ,

am 1  I k = K k
K

1
k

k
k2 0, 1

identities

am 1  n k = 2 n K k am 1 k n::

sum form



(82)(82)

(195)(195)

(180)(180)

(339)(339)

(97)(97)

(103)(103)

(176)(176)

(27)(27)

(286)(286)

(290)(290)

(232)(232)

(299)(299)

(50)(50)

(111)(111)

(205)(205)

o. o. 

(222)(222)

(242)(242)

(346)(346)

(267)(267)

(88)(88)

(133)(133)

am 1 k =
_m2 = 0

_m1 = 0
k2 _m1

 sin
2 _m2 2 _m1 1

 
1
2 _m2

1
2 _m1

2 _m2 2 _m1

1  _m2! _m1!

with no restrictions on , k

series

series am 1 k , , 4 =
1
6

 k2 
3

O
4

integral form

am 1 k =

0

1

1 k2 sin _ 1 2
d_ 1 with no restrictions on , k

differentiation rule



(82)(82)

(195)(195)

(180)(180)

(339)(339)

(97)(97)

(103)(103)

(176)(176)

(27)(27)

(286)(286)

(290)(290)

(232)(232)

(299)(299)

(50)(50)

(111)(111)

(205)(205)

o. o. 

(222)(222)

(242)(242)

(346)(346)

(267)(267)

(88)(88)

(133)(133)

am 1 k =
1

1 k2 sin
2

n

n am 1 k =

am 1 k n = 0

2 n
1
2

 
_k1 = 0

n 1 1 _k1 1 k2 sin
2

1
2

_k1

 
n 1

n 1 1 k2 sin
2 _k1

_k1! 2 _k1 1  n _k1 1 !
otherwise

k
am 1 k = 2 k 

Z am 1 k , k
E k  am 1 k

K k
2 k2 k2 1

am 1 k
2 k2

sin 2 

4 k2 1  1 k2 sin
2

DE



(82)(82)

(195)(195)

(180)(180)

(339)(339)

(97)(97)

(366)(366)

(103)(103)

(368)(368)

(176)(176)

(27)(27)

(286)(286)

(290)(290)

(232)(232)

(364)(364)

(299)(299)

(50)(50)

(365)(365)

(111)(111)

(367)(367)

(205)(205)

o. o. 

(222)(222)

(242)(242)

(346)(346)

(267)(267)

(88)(88)

(133)(133)

f = am 1 k

d2

d
2 f

2

= k2 1  
d
d

f
6

k2 2  
d
d

f
4

d
d

f
2

 

Problem
Integrate the equations of motion for a particle of mass m moving in a field whose potential energy is 
U = A x n .

Solution

restart;
with Physics :

In Cartesian coordinates
Assume x real

x::real
the Energy E = T U  is given by
CompactDisplay x t

x t  will now be displayed as x

E =
1
2

m diff x t , t 2 U x t

E =
m x

. 2

2
U x

Introducing U = A x n , we have the following 1st order differential equation for x t
Assume n 0, A 0, m 0

n:: 0, , A:: 0, , m:: 0,

subs U x t = A x t n, (366)

E =
m x

. 2

2
A x n

Placing the origin of the system of reference such that x 0  = 0, 
dsolve (368), x 0 = 0



(82)(82)

(195)(195)

(371)(371)

(180)(180)

(339)(339)

(97)(97)

(103)(103)

(176)(176)

(27)(27)

(286)(286)

(290)(290)

(372)(372)

(232)(232)

(299)(299)

(50)(50)

(370)(370)

(111)(111)

(369)(369)

(205)(205)

o. o. 

(374)(374)

(222)(222)

(242)(242)

(346)(346)

(267)(267)

(373)(373)

(88)(88)

(133)(133)

x = RootOf t

0

_Z
m

2 m A _a n E
d_a , x = RootOf t

0

_Z

m

2 m A _a n E
d_a

Take the solution for which t 0
DEtools:-remove_RootOf (369) 1

t

0

x
m

2 m A _a n E
d_a = 0

The constant energy E can be replaced by its value at the return point E = U = x0
n x0

n

Assume x0 0

x0:: 0,

simplify subs E = x0
n, (370)

t

m  2  

0

x
1

A _a n x0
n

d_a

2
= 0

This integral can be computed exactly in terms of the hypergeometric function F12 , and the solution x t is
expressed in implicit form as t t x
value (372)

t

m  2  
x0

n
2  x F12

1
2

,
1
n

;
1 n

n
; x0

n A x n x 0

x0

n
2  x F12

1
2

,
1
n

;
1 n

n
; xn x0

n A 0 x

2
= 0

Restricting this solution to the region x 0, 
(373) assuming x t   0

t
m  2  x0

n
2  x F12

1
2

,
1
n

;
1 n

n
; xn x0

n A

2
= 0

To see several sections with information on the hypergeometric function F12 , you can use the
FunctionAdvisor
FunctionAdvisor hypergeom



(82)(82)

(195)(195)

(180)(180)

(339)(339)

(97)(97)

(103)(103)

(176)(176)

(27)(27)

(286)(286)

(290)(290)

(232)(232)

(299)(299)

(50)(50)

(111)(111)

(369)(369)

(205)(205)

o. o. 

(222)(222)

(242)(242)

(346)(346)

(267)(267)

(88)(88)

(133)(133)

hypergeom
describe

hypergeom = generalized hypergeometric function

definition

F12 a, b; c; z =
_k1 = 0

a _k1 b _k1 z_k1

_k1! c _k1

a:: 0, c a 1 z 1 z = 1
0 c a b z = 1 z
1 c a b 1, 0

classify function

hypergeometric

periodicity

F12 a, b; c; z No periodicity

plot



(82)(82)

(195)(195)

(180)(180)

(339)(339)

(97)(97)

(103)(103)

(176)(176)

(27)(27)

(286)(286)

(290)(290)

(232)(232)

(299)(299)

(50)(50)

(111)(111)

(369)(369)

(205)(205)

o. o. 

(222)(222)

(242)(242)

(346)(346)

(267)(267)

(88)(88)

(133)(133)

F12 4 
1
3

, 9 
1
16

; 14 
1
5

; x

x
100 40 0

  
2

generalized hypergeometric function

F12 5, 10; 1; x

x
1 0 0.5 1

  
2

generalized hypergeometric function

F12 1, 10; 10; x

x
3 2 1 0 1

  100

generalized hypergeometric function

F12 5, 10; 1; x

x
1 0.4 0 0.2

  
2

generalized hypergeometric function

F12 4 1
3

, 9 1
16

; 14 1
5

; z F12 3, 3 1
5

; z; 1
2

singularities

F12 a, b; c; z z 1,

branch points

F12 a, b; c; z z 1,  I

branch cuts

F12 a, b; c; z z 1,



(82)(82)

(195)(195)

(180)(180)

(339)(339)

(97)(97)

(103)(103)

(176)(176)

(27)(27)

(286)(286)

(290)(290)

(232)(232)

(299)(299)

(50)(50)

(111)(111)

(369)(369)

(205)(205)

o. o. 

(222)(222)

(242)(242)

(346)(346)

(267)(267)

(88)(88)

(133)(133)

special values



(82)(82)

(195)(195)

(180)(180)

(339)(339)

(97)(97)

(103)(103)

(176)(176)

(27)(27)

(286)(286)

(290)(290)

(232)(232)

(299)(299)

(50)(50)

(111)(111)

(369)(369)

(205)(205)

o. o. 

(222)(222)

(242)(242)

(346)(346)

(267)(267)

(88)(88)

(133)(133)

F12 a, b; c; 0 = 1

F12 a, b; c; z = b z, 1, b a = 1 c = 1 b

F12 a, b; c; z = Ta 1 2 z a b = 0 c =
1
2

F12 a, b; c; z =
ln z 1

z
a = 1 b = 1 c = 2

z 0

F12 a, b; c; z =
arctanh z

z

a =
1
2

b = 1 c

=
3
2

F12 a, b; c; z =
2 K z a =

1
2

b =
1
2

c

= 1

F12 a, b; c; z =
2 E z a =

1
2

b =
1
2

c

= 1

F12 a, b; c; z =

arccsc
1

z

z

a =
1
2

b =
1
2

c

=
3
2

F12 a, b; c; z =
arcsin z

z

a =
1
2

b =
1
2

c

=
3
2

F12 a, b; c; z =
arctan z

z

a =
1
2

b = 1 c



(82)(82)

(195)(195)

(180)(180)

(339)(339)

(97)(97)

(103)(103)

(176)(176)

(27)(27)

(286)(286)

(290)(290)

(232)(232)

(299)(299)

(50)(50)

(111)(111)

(369)(369)

(205)(205)

o. o. 

(222)(222)

(242)(242)

(346)(346)

(267)(267)

(88)(88)

(133)(133)

identities



(82)(82)

(195)(195)

(180)(180)

(339)(339)

(97)(97)

(103)(103)

(176)(176)

(27)(27)

(286)(286)

(290)(290)

(232)(232)

(299)(299)

(50)(50)

(111)(111)

(369)(369)

(205)(205)

o. o. 

(222)(222)

(242)(242)

(346)(346)

(267)(267)

(88)(88)

(133)(133)

2a2b
F12 a, b; c; z = F12 2 a, 2 b;

1
2

a

b;
1
2

1 z
2

z 1
1
2

a b
c = 0

lower 1/2

F12 1, 1; 2; z = F12
1
2

,

1
2

;
3
2

;
z2 z 2 2

4 1 z 2

 z z 2 1

z

 
z2 2 z 2

2

1 z 2

z2 2

z 1

lower a

F12 a, b; c; z

=
1

a 1  1 z
a b

1  z 2 a c 2  F12 b, a
1; c; z c a 1  F12 b,

a 2; c; z

a 1 z
1

lower c

F12 a, b; c; z = 2 z 1  c 2 a
b 3  z  F12 a, b; c 1; z F12 a,

b; c 2; z  1 z  c 2  c
1 c 1 a  c 1 b  z

quadratic 1

F12 a, b; c; z =
1

1 z
F12 2 a

1, 1 2 b;
1
2

a b;
1
2

z 1
1
2



(82)(82)

(195)(195)

(180)(180)

(339)(339)

(97)(97)

(103)(103)

(176)(176)

(27)(27)

(286)(286)

(290)(290)

(232)(232)

(299)(299)

(50)(50)

(111)(111)

(369)(369)

(205)(205)

o. o. 

(222)(222)

(242)(242)

(346)(346)

(267)(267)

(88)(88)

(133)(133)

sum form

F12 a, b; c; z =
_k1 = 0

a _k1 b _k1 z_k1

_k1! c _k1

a:: 0, c a 1 z 1 z = 1
0 c a b z = 1 z
1 c a b 1, 0

series

series F12 a, b; c; z , z, 4 = 1
a b
c

 z
1
2

 
a b a 1  b 1

c c 1
 z2

1
6

 
a b a 1  b 1  a 2  b 2

c c 1  c 2
 z3 O z4

integral form

F12 a, b; c; z

=

c  
0

1
_t1b 1

_t1 1 c b 1 _t1 z 1 a d_t1

b  c b

0 b b
c

differentiation rule

z
F12 a, b; c; z =

a b F12 a 1, b 1; c 1; z

c

n

zn F12 a, b; c; z =
a n b n F12 a n, b n; c n; z

c n

DE



(82)(82)

(195)(195)

(180)(180)

(339)(339)

(97)(97)

(103)(103)

(176)(176)

(27)(27)

(286)(286)

(290)(290)

(375)(375)

(232)(232)

(299)(299)

(50)(50)

(111)(111)

(369)(369)

(205)(205)

o. o. 

(222)(222)

(242)(242)

(346)(346)

(267)(267)

(88)(88)

(133)(133)

f z = F12 a, b; c; z

d2

dz2 f z

=
a b 1  z c  

d
dz

f z

z z 1
f z  a b
z z 1

 

Reduced mass
The two-body problem

Problem

Show that by placing the origin of the reference system at the center of mass  R = i = 1

n

mi r i

i = 1

n

mi

, the problem 

of two particles that interact with each other can be reduced to the problem of a single particle of mass 

=
m1 m2

m1 m2
, herein called reduced mass, in an external field U r 1 r 2 .

Solution

restart; 
with Physics:-Vectors :

In what follows R denotes the position of the center of mass while  (from the palette for Open Face) 
denotes the relative position r 1 r 2 .
CompactDisplay _, r_ t

t  will now be displayed as 

r t  will now be displayed as r
The Lagrangian describing a closed system of two particles of masses m1  and m2  that interact with each 
other is given by

L =
1
2

m 1  diff r_ 1 t , t 2 1
2

m 2  diff r_ 2 t , t 2 U Norm r_ 1 r_ 2 t



(82)(82)

(195)(195)

(379)(379)

(381)(381)

(180)(180)

(339)(339)

(97)(97)

(380)(380)

(382)(382)

(376)(376)

(378)(378)

(103)(103)

(176)(176)

(27)(27)

(286)(286)

(290)(290)

(232)(232)

(299)(299)

(377)(377)

(50)(50)

(383)(383)

(111)(111)

(369)(369)

(205)(205)

o. o. 

(222)(222)

(242)(242)

(346)(346)

(267)(267)

(88)(88)

(133)(133)

L =
m1 r

.
1

2

2

m2 r
.
2

2

2
U r 1 r 2

Introduce the relative position vector  as the dependency for the potential energy U r 1 r 2
r_ 1 t r_ 2 t = _ t

r 1 r 2 =

subs (377), (376)  

L =
m1 r

.
1

2

2

m2 r
.
2

2

2
U

and take the origin of the reference system at the center of mass R

i = 1

2

mi r i t

i = 1

2

mi

 = 0 :  value %

m1 r 1 m2 r 2

m1 m2
= 0

Now we have a system of two equations, (377) and (379), that can be solved for r 1  and r 2
solve (377), (379) , r_ 1 , r_ 2 t

r 1 =
 m2

m1 m2
, r 2 =

m1 

m1 m2

The Lagrangian (378) can now be written in terms of R
eval (378), (380)  

L =
m1 

. 2

 m2
2

2 m1 m2
2

m2 m1
2 

. 2

2 m1 m2
2 U

Expand the vector formal power 
.

 2  to express it in terms of the norm 
. 2

expand (381)

L =
m1 m2

2 
. 2

2 m1 m2
2

m2 m1
2 

. 2

2 m1 m2
2 U

Collect the Norm R
.

collect (382), Norm, simplify  

L =
m1 m2 

. 2

2 m1 2 m2
U



(82)(82)

(339)(339)

(97)(97)

(376)(376)

(385)(385)

(384)(384)

(27)(27)

(290)(290)

(388)(388)

(111)(111)

(205)(205)

(222)(222)

(242)(242)

(267)(267)

(386)(386)

(88)(88)

(195)(195)

(180)(180)

(103)(103)

(176)(176)

(286)(286)

(232)(232)

(299)(299)

(50)(50)

(387)(387)

(369)(369)

o. o. 

(346)(346)

(133)(133)

Introduce the reduced mass
m 1 m 2

m 1 m 2
=

m1 m2

m1 m2
=

Simplifying the Lagrangian (383) taking this relation into account 
simplify (383), (384)

L =

. 2
 

2
U

 
This is the Lagrangian of one single particle of mass  moving in an external field, U , that 
depends only on the distance to the origin.

A many-body problem

Problem
A system consists of one particle of mass M and n particles of equal masses m. 
a) Show, in steps, that eliminating the motion of the center of mass reduces the problem to one involving 
only n particles.
b) Show that when n = 1the result of a) becomes the result obtained for the previous two-body problem, 

equation (385) L =
1
2

 
. 2

U .

Solution

restart; 
with Physics:-Vectors : 

a) Let r M  represent the position vector of the particle of mass M and r a  those of the particles of mass m. 
The Lagrangian L = T U  is given by
CompactDisplay rM_, r_, _ t

r M t  will now be displayed as r M

r t  will now be displayed as r

t  will now be displayed as 
Physics:-Assume m 0, M 0

m:: 0, , M:: 0,

L = 
1
2

M diff rM_ t , t 2  
1
2

 Sum m diff r_ a t , t 2, a = 1 ..n   U

L =
M r M

. 2

2
a = 1

n

m r
.
a

2

2
U



(82)(82)

(339)(339)

(97)(97)

(376)(376)

(394)(394)

(393)(393)

(27)(27)

(290)(290)

(392)(392)

(391)(391)

(111)(111)

(395)(395)

(205)(205)

(222)(222)

(242)(242)

(267)(267)

(88)(88)

(195)(195)

(180)(180)

(103)(103)

(389)(389)

(176)(176)

(286)(286)

(232)(232)

(299)(299)

(50)(50)

(390)(390)

(369)(369)

o. o. 

(346)(346)

(133)(133)

Expand the formal powers of vectors to express them in terms of their Norm
expand (388)

L =
M r M

. 2

2

m 
a = 1

n

r
.
a

2

2
U

As done in the two-body problem, introduce the relative vector positions of the n particles with respect to 
the particle of mass M

_ a t  = r_ a t   rM_ t

a = r a r M

and place the origin of the reference system at the center of mass, 
M rM_ t Sum m r_ a t , a = 1 ..n

M Sum m, a = 1 ..n
= 0

M r M
a = 1

n

m r a

M
a = 1

n

m

= 0

expand (391)

M r M

m n M

m 
a = 1

n

r a

m n M
= 0

Using this equation and (390) r a = a r M  is sufficient to eliminate r M  and r a  from the Lagrangian 
(389). In steps, eliminating r a  from the equation for the center of mass
simplify (392), (390) , r_ a t

M r M m 
a = 1

n

a r M

m n M
= 0

expand (393)

M r M

m n M

m 
a = 1

n

a

m n M

m r M n

m n M
= 0

To eliminate r M  , use
simplify isolate (394), rM_ t

r M =
m 

a = 1

n

a

m n M
Likewise, to eliminate r a  use



(82)(82)

(195)(195)

(180)(180)

(339)(339)

(97)(97)

(376)(376)

(396)(396)

(103)(103)

(176)(176)

(27)(27)

(286)(286)

(290)(290)

(232)(232)

(299)(299)

(50)(50)

(111)(111)

(369)(369)

(399)(399)

(400)(400)

(205)(205)

o. o. 

(222)(222)

(398)(398)

(242)(242)

(346)(346)

(267)(267)

(88)(88)

(133)(133)

(397)(397)

isolate (390), r_ a t  
r a = a r M

Substitute, sequentially, these two equations into the Lagrangian (389)
subs (396), (395), (389)

L =

M 
m 

a = 1

n

a

m n M t

2

2

m 
a = 1

n

a

m 
a = 1

n

a

m n M t

2

2
U

To verify by eye each step for correctness, one can manipulate this expression surgically using subsindets .
First expand only the Norms 
subsindets (397), specfunc Norm , expand

L =
M m2 

a = 1

n .

a

2

2 m n M 2

m 
a = 1

n .

a

2
2 m 

.

a
a = 1

n .

a

m n M

m2 
a = 1

n .

a

2

m n M 2

2

U
This result is correct. Next expand only the Sums 
subsindets (398), specfunc Sum , expand

L =
M m2 

a = 1

n .

a

2

2 m n M 2
1
2

m 
m2 n2 

a = 1

n .

a

2

m n M 2

2 M m n 
a = 1

n .

a

2

m n M 2

M2 
a = 1

n .

a

2

m n M 2

m2 
a = 1

n .

a

2

 n

m n M 2

2 M m 
a = 1

n .

a

2

m n M 2 U

This result also verifies visually. Collect the terms polynomial in Norm then Sum and normalize the 
coefficients
collect (399), Norm, Sum , normal

L =
m2 

a = 1

n .

a

2

2 m n M

m 
a = 1

n .

a

2

2
U

This Lagrangian involves only the n relative position vectors a , achieving the reduction of the original 
problem of n 1 particles to a problem of only n particles.

_______________________________________

b) To obtain the result (385) L =
1
2

 
. 2

 U  for the two-body problem, substitute n = 1 into 



(82)(82)

(401)(401)

(339)(339)

(97)(97)

(376)(376)

(27)(27)

(290)(290)

(406)(406)

(111)(111)

(205)(205)

(222)(222)

(242)(242)

(267)(267)

(88)(88)

(195)(195)

(403)(403)

(180)(180)

(405)(405)

(103)(103)

(176)(176)

(286)(286)

(402)(402)

(232)(232)

(404)(404)

(299)(299)

(50)(50)

(369)(369)

o. o. 

(346)(346)

(133)(133)

(400) L =

1
2

 m2 
a = 1

n .

a

2

m n M
1
2

 m 
a = 1

n .

a

2
U

subs n = 1, (400)

L =
m2 

a = 1

1 .

a

2

2 M m

m 
a = 1

1 .

a

2

2
U

Expand only the Sums and collect the Norm
subsindets (401), specfunc Sum , expand

L =
m2 

.

1

2

2 M m

m 
.

1

2

2
U

collect (402), Norm, normal

L =
M m 

.

1

2

2 M m
U

Comparing with the definition of reduced mass (384)
(384)

m1 m2

m1 m2
=

we see the substitutions to transform (403) into (384) are
M = m 1 , m = m 2 , r_ 1  = R_

M = m1, m = m2, r 1 = R

Substitute them, simultaneously (enclose the sequence of equations into a list), then simplify taking 
m1 m2

m1 m2
=  into account

simplify subs (405) , (403) , (404)

L =

.

1

2
 

2
U

 
This is the same as (385), the reduced Lagrangian for the two-body problem.

Motion in a central field
A one-body problem in a central field, is about the motion of a single particle of mass m in a field where 
the potential energy, and so the magnitude of the force, depends only on the distance between the particle 
and a fixed point, frequently chosen as the origin of the reference system. As seen above, the two-body 
problem, is reducible to a one-body problem in a central field. 

Problem



(82)(82)

(339)(339)

(97)(97)

(407)(407)

(376)(376)

(411)(411)

(27)(27)

(290)(290)

(410)(410)

(111)(111)

(205)(205)

(222)(222)

(242)(242)

(267)(267)

(88)(88)

(195)(195)

(180)(180)

(412)(412)

(408)(408)

(103)(103)

(176)(176)

(286)(286)

(232)(232)

(299)(299)

(50)(50)

(369)(369)

o. o. 

(409)(409)

(346)(346)

(133)(133)

The angular momentum L = r p  of a particle that moves in a central field is conserved, so r  evolves in 
time on a fixed plane perpendicular to the constant L . Show that the surface swept per second by the 
position vector r  is constant (Kepler's second law).

Solution

restart; 
with Physics:-Vectors :
CompactDisplay r_, p_, L_, rho, phi, z, _rho, _phi t

r t  will now be displayed as r

p t  will now be displayed as p

L t  will now be displayed as L

t  will now be displayed as 

t  will now be displayed as 

z t  will now be displayed as z

t  will now be displayed as 

t  will now be displayed as 

The angular momentum L  of a particle in a central field
L_ = r_ t  p_ t

L = r p
subs p_ t = m diff r_ t , t , (408)

L = r m r
.

From (25), the position vector in cylindrical coordinates is given by
(25)

r = z k  

So the z component of L  is given by
eval (409), (25)

L = m z 
.
  z 

.
 z
.

 
2
 
.
 k

(411) . _k

L k =
.
 

2
 m

In the subsection on Cyclic coordinates , in equation (339)  . L t =
2
 
.
 m , it is shown that this 

quantity (as in the above) is conserved. Now, the area of an infinitesimal triangle (angle d on the x, y  

plane, centered at the origin of the central field, is df = 
   d

2
. So (412) can be re-expressed as

Lz =
m diff f t , t

2



(82)(82)

(339)(339)

(97)(97)

(376)(376)

(417)(417)

(416)(416)

(27)(27)

(290)(290)

(413)(413)

(111)(111)

(205)(205)

(418)(418)

(222)(222)

(242)(242)

(267)(267)

(88)(88)

(195)(195)

(180)(180)

(103)(103)

(176)(176)

(286)(286)

(232)(232)

(299)(299)

(50)(50)

(414)(414)

(369)(369)

(415)(415)

o. o. 

(346)(346)

(133)(133)

Lz =
m f

.
t

2
Since by construction f t  is a continuous function, integrate both sides with that condition
map %int, (413), t = 0 ..1, continuous

0

1
Lz dt

continuous

=
0

1
m f

.
t

2
dt

continuous

At t = 0, f 0 = 0
f 0   0 

f 0 0
Evaluate now the integrals of (414)
value (414)

Lz =
m f 1

2
So the area swept in 1 second is constant and equal to
isolate (416), f 1

f 1 =
2 Lz

m
 

Problem
Starting from the constancy of the energy E and the angular momentum L , compute the equations of 
movement and integrate them according to:
a) using differential elimination techniques to uncouple the system of equations of movement that involve 
both of t  and t  
b) interactively, one step at a time, uncouple the equations of movement eliminating  from the problem, 
resulting in an implicit solution t t .

c) eliminate t from the problem to obtain an equation for 
d
d

 , whose solution is the trajectory as 

Solution

restart;
with Physics:-Vectors :
CompactDisplay rho, phi, z, _rho, _phi, r_ t

t  will now be displayed as 

t  will now be displayed as 

z t  will now be displayed as z

t  will now be displayed as 

t  will now be displayed as 

r t  will now be displayed as r



(82)(82)

(425)(425)

(339)(339)

(97)(97)

(376)(376)

(27)(27)

(420)(420)

(290)(290)

(413)(413)

(111)(111)

(205)(205)

(222)(222)

(242)(242)

(267)(267)

(88)(88)

(423)(423)

(195)(195)

(180)(180)

(419)(419)

(103)(103)

(176)(176)

(286)(286)

(232)(232)

(299)(299)

(50)(50)

(426)(426)

(369)(369)

o. o. 

(424)(424)

(422)(422)

(346)(346)

(133)(133)

(421)(421)

Assume m 0, Lz 0

m:: 0, , Lz:: 0,

a) The energy of the system is given by
E = T U

E = T U

T =
1
2

m diff r_ t , t 2

T =
m r

. 2

2

In a central field, with the origin at the center of the field and using cylindrical coordinates , , z  the 
potential energy is U r = U , so the energy E is given by
subs (421), U = U rho t , (420)

E =
m r

. 2

2
U

Expand the symbolic power of r  to express it in terms of its Norm squared
expand (422)

E =
m r

. 2

2
U

From (25), the position vector in cylindrical coordinates is
(25) 

r = z k  
Since the movement happens all on the x, y  plane, discard the z component and introduce the result in 
the expression for E
eval (423), subs z t  = 0, (25)

E =
m 

. 2 . 2
 

2

2
U

In turn, the constancy of the z component of the angular momentum L , shown in the previous problem as 
(412)
subs L_ . _k = Lz, (412)  

Lz =
.
 

2
 m

Equations (426) and (425) form a system of coupled differential equations for the functions t and 
t . Although by eye this system can be decoupled interactively with ease (see further below) it is useful 

to see how these coupled systems can be uncoupled in Maple using differential elimination techniques . 
These techniques are one of the significant advantages of computer algebra with respect to paper and pencil
computations. In Maple, that uncoupling is achieved using the PDEtools:-casesplit command
PDEtools:-casesplit (425), (426) , caseplot  

========= Pivots Legend =========
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p1 =

p2 =
.

 

1

 

2

`=`

p1

p2

Rif Case Tree

.
=

Lz
2
 m

,
. 2

=
2 

2
 m E 2 

2
 m U Lz

2

2
 m2

where
.

0 ,
.

=
Lz
2
 m

, U

=
2 

2
 m E Lz

2

2 
2
 m

,
.

= 0 where 0

In this result we see the general case in first place, with one differential equation involving only t , and 
a singular case related to 

.
= 0. 
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_______________________________________

b) The same result for the general case can be computed interactively. From (426),
isolate (426), diff phi t , t

.
=

Lz
2
 m

(428)2

. 2
=

Lz
2

4
 m2

The expression of E can now be expressed only in terms of t
subs (429), (425)

E =

m 
. 2 Lz

2

2
 m2

2
U

The above is the same result shown in first place in (427). Two possible solutions for 
.
 are

diff rho t , t  =~ solve (430), diff rho t , t

.
=

2 
2
 m E 2 

2
 m U Lz

2

 m
,

.
=

2 
2
 m E 2 

2
 m U Lz

2

 m
Taking the positive root
(431) 1

.
=

2 
2
 m E 2 

2
 m U Lz

2

 m
This is a differential equation where the variables can be separated: the right-hand side does not depend 
explicitly on t, the solution is
dsolve (432)

t
_a m

2 _a2 m E 2 _a2 m U _a Lz
2

d_a c1 = 0

Removing the dependency of t , and rewriting the Intat (an integral evaluated at a point, t ) as a 
standard integral,
useInt subs rho t  = rho, (433)

t
 m

2 
2
 m E 2 

2
 m U Lz

2
d c1 = 0

_______________________________________

c) Since (428) is an expression for 
d
dt

 and (432) one for 
d
dt

, they can be combined into an expression 
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for 
d
d

 eliminating the independent variable t from the problem, resulting in an integral of the trajectory as

dphi
dt

= rhs (428)

d
dt

=
Lz
2
 m

drho
dt

= rhs (432)

d
dt

=
2 

2
 m E 2 

2
 m U Lz

2

 m

(435)
(436)

 

d
d

=
Lz

 2 
2
 m E 2 

2
 m U Lz

2

Rewriting the left-hand side as a derivative, the resulting differential equation is
diff phi rho , rho  = subs rho t  = rho, rhs (437)

=
Lz

 2 
2
 m E 2 

2
 m U Lz

2

Solving,
dsolve (438)

=
Lz

 2 
2
 m E 2 

2
 m U Lz

2
d c1

Which is already the desired result . With some manipulations the square root can be rewritten as 
frequently shown in textbooks. For that, get the square root
indets (439), sqrt

1

2 
2
 m E 2 

2
 m U Lz

2

This root can be rewritten more compactly as

(440) 1  = 
1

 2 m E U
Lz

2

2
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(441)(441)
1

2 
2
 m E 2 

2
 m U Lz

2
=

1

 2 m E U
Lz

2

2

So the result (439), as shown in textbooks, is
subs (441), (439)

=
Lz

2
 2 m E U

Lz
2

2

d c1

 

Kepler's problem

Problem

Show that, when U = , with 0, the solution (442) for the motion in a central field, part c)

of the previous problem, 

=
Lz

2
 2 m E U

Lz
2

2

1
2

d c1

becomes the equation of a conic section 
p

= 1 cos  

where p =
Lz

2

m 
,  = 1

2 E Lz
2

m 
2 .

Solution

restart;
with Physics:-Vectors :

Assume E 0, m 0, Lz 0, 0, p 0, 0  

E:: 0, , m:: 0, , Lz:: 0, , :: 0, , p:: 0, , :: 0,

Introduce the form of the potential energy U  and remove the dependency of  

subs U rho = , phi rho  = phi, (442)
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=
Lz

2
 2 m E

Lz
2

2

d c1

Compute the integral
value (444)

= arctan
 m Lz

2

Lz 2 E m 
2

2  m Lz
2

c1

The new variables indicated, parametrizing the conic section, are

p =
Lz

2

m 
, = sqrt 1

2 E Lz
2

m 
2
 

p =
Lz

2

m 
, = 1

2 E Lz
2

m 
2

Solve these for any two of the variables involved in order to remove them from (445)
solve (446) , m, alpha
Warning, solve may be ignoring assumptions on the input variables.

=
2 E p
2

1
, m =

Lz
2 

2
1

2 E p2

subs (447), (445)

= arctan

Lz
2 

p
Lz

2

Lz 
Lz

2 
2

1  
2

p2

2 Lz
2 

p
Lz

2

c1

simplify (448)

= arctan
p

2
1  

2
2  p p2

c1

At this point, for manipulation purposes it is convenient to introduce a single variable representing the rate 
p

P

simplify subs p = P rho rho, (449)

= arctan
P 1

P
2 2

2 P 1
c1

Solving for P ,
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P rho  = solve (450), P rho
Warning, solve may be ignoring assumptions on the input variables.

P = tan c1   
1

tan c1
2

1
1

Adjusting the value of the integration constant c1 =
2

,

simplify eval (451), c1 =
2

 assuming sin 0

P = cos  1

Recalling the definition of P ,

subs P =
p

, (452)

p
= cos  1

This is the expected result, the equation of a conic section with one focus at the origin, 2 p  as latus rectum 
and  representing the eccentricity.
 

Small Oscillations

Free oscillations in one dimension

Problem
Consider the case of 1-dimensional motion where the acting force opposes the motion as a function of the 
position, F = k x i . This is the case, for example, of a spring, the more you stretch it (the bigger x), the 
more it opposes the stretching in the opposite direction i . Write the equation of motion as Newton's 
2nd law, then the Lagrangian and Lagrange equation for it, and integrate the equation for generic initial 
conditions

Solution

restart :
with Physics:-Vectors :
with Physics, LagrangeEquations :

Since we know the force, we can write Newton's 2nd law F = m a  directly 
CompactDisplay x t  

x t  will now be displayed as x
F_  k x t  _i

F k x i
m diff x t  _i, t, t = F_ 
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m x
..
 i = k x i

It is instructive, however, to formulate the problem deriving the equations of motion (456) from the 
Lagrangian. The potential energy associated to this force is, up to an arbitrary non-relevant constant,

U
k x t 2

2

U
k x2

2
so that the force F can be retrieved as U

%Nabla = Nabla U
k x2

2
= k x i

The kinetic energy is

T
1
2

 m diff x t , t 2

T
m x

. 2

2
so the Lagrangian is given by
L  T U

L
m x

. 2

2
k x2

2
The Lagrange equation involves only these two terms:
%diff %diff L, diff x t , t , t  = %diff L, x t  

t x
. m x

. 2

2
k x2

2
=

x
m x

. 2

2
k x2

2
value (461)

m x
..

= k x

where we see Newton's second law (456) retrieved. The (Lagrange) equation of motion (461) can be 
computed directly using the LagrangeEquations  command
LagrangeEquations L, x

m x
..

k x = 0
The integration of this equation is straightforward. Generic initial conditions would be 
%eval x t , t = t0 = x0, %eval diff x t , t , t = t0 = v0

x
t = t0

= x0, x
.

t = t0

= v0

dsolve (456)  _i, (464)  

x =

cos
k  t0
m

 m  v0 sin
k  t0
m

 k  x0  sin
k  t

m

k
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x0 k  cos
k  t0
m

v0 m  sin
k  t0
m

 cos
k  t

m

k
 

Forced oscillations

Problem
Consider oscillations in 1 dimension of a system on which an external force Fext t  acts. For the 

oscillations to be small, Fext t  must produce only small displacements. The total force is  

F = k x i Fext t . 

a) Write the equation of motion as Newton's 2nd law, then write the Lagrangian and Lagrange equations.
b) Integrate the equation of motion for generic initial conditions.
c) Specialize the solution computed in b) for Fext t = f0 cos  t  to obtain

x t =

a cos  t
f0  cos  t

m 
2 2

f0 cos  t

2 m 

f0 cos  t

2  m

for some constants a, b, , .
d) Show that a solution for the case considered in c), that is, Fext t = f0 cos  t , can be 
computed manually to get

x t = a cos  t
f0 cos  t

m 
2 2

for some other constants a, b, , .
e) Specialize the solution of item d) in the case of resonance, when = , by taking limits, thus obtaining

x t = a cos  t
f0 t sin  t

2  m
f) Show that the solution computed taking limits in e) can be compute directly by using dsolve and 
specializing the integration constants c1  and c2  that appear when solving the underlying differential 
equation.

Solution

restart :
with Physics:-Vectors :
with Physics, Gtaylor, Coefficients, LagrangeEquations :
CompactDisplay x t

x t  will now be displayed as x

Since Fext t  produces small displacements, and assuming it derives from a potential Uext x t , it can be
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approximated by expanding Uext x t  in series while keeping terms up to first order in x
Uext x t = Gtaylor Uext x t  , x t , 2

Uext x = Uext 0 D Uext 0  x

Denoting F0 t = D Uext 0 and taking the Gradient
F_ ext t  = subs D Uext 0 = F0 t ,  Gradient rhs (467)

Fext t = F0 t  i

The total force is
F_ t  = rhs (468) k x t  _i 

F t = i  F0 t k x

We can write Newton's 2nd law F = m a  as
m diff x t  _i, t, t = rhs (469)

m x
..
 i = i  F0 t k x

Since there is only one component, one may prefer to write this as
(470) . _i 

m x
..

= F0 t k x

Using Component (470), 1  produces the same result. The Lagrangian can be formulated directly by 

taking (467) as the potential for Fext  and 
k x t 2

2
 as the potential for free oscillations

U
k x t 2

2
subs D Uext 0 = F0 t , rhs (467)

U
k x2

2
Uext 0 F0 t  x

Discard the term Uext 0  which can always be expressed as a total derivative with respect to the time t
U  subs Uext 0 = 0, U

U
k x2

2
F0 t  x

The force F can be retrieved as U
%Nabla = Nabla U

k x2

2
F0 t  x = k x F0 t  i

The kinetic energy is

T
1
2

 m diff x t , t 2

T
m x

. 2

2
so the Lagrangian is given by
L  T U
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L
m x

. 2

2
k x2

2
F0 t  x

The Lagrange equation is
%diff %diff L, diff x t , t , t  = %diff L, x t  

t x
. m x

. 2

2
k x2

2
F0 t  x =

x
m x

. 2

2
k x2

2
F0 t  x

value (477)
m x

..
= F0 t k x

Here we see Newton's second law (471) retrieved; this equation of motion can also be computed using the
LagrangeEquations  command
LagrangeEquations L, x

m x
..

F0 t k x = 0

Introducing the frequency 
2

=
k
m

simplify (478),
2

=
k
m

, k

m x
..

= x 
2
 m F0 t

_______________________________________

b) The integration of this equation with generic initial conditions gives
%eval x t , t = 0 = x0, %eval diff x t , t , t = 0 = v0

x
t = 0

= x0, x
.

t = 0
= v0

dsolve (480), (481)  

x =
1

m 
cos  t  x0 m sin  t  v0 m

0

t
cos  _z1  F0 _z1 d_z1  sin  t

0

t
sin  _z1  F0 _z1 d_z1  cos  t

combine (482)

x = 0

t
F0 _z1  sin  _z1  t d_z1 cos  t  x0 m sin  t  v0 m

 m
The last two terms of the numerator can be rewritten as
cos  t  x0 sin  t  v0 = a cos t alpha

cos  t   x0 sin  t  v0 = a cos  t

Expanding the right-hand side,
lhs (484)  = expand rhs (484)
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cos  t   x0 sin  t  v0 = a cos  t  cos a sin  t  sin

the relation between x0, v0  and a,  is
PDEtools:-Solve (485), x0, v0 , independentof = t

v0 = a sin , x0 =
a cos

Hence the solution (483) can be rewritten as
simplify (483), (484)

x =

a m cos  t
0

t
F0 _z1  sin  _z1 t d_z1

m 
_______________________________________

c) The external force is also oscillatory, of the form F0 t = f0 cos  t . Transform this form of 
F0 t into a mapping using unapply in order to use it in the differential equation (480) and within the 
integral above
F0 = unapply f0 cos  t , t

F0 = t " f0 cos t

The equation of motion becomes
eval (480), (488)  

m x
..

= x 
2
 m f0 cos  t

and for the solution (487) 
eval (487), (488)

x =

a m cos  t
0

t
f0 cos  _z1  sin  _z1 t d_z1

m 

The integral can now be evaluated. However, the result is slightly messy
value (490)

x =
1

m 
a m cos  t

1
2  

f0 cos  t  cos  t  

cos  t  cos  t  2 cos  t  

In cases like this, a better result can be computed by doing a surgical operation: evaluate the integral and 
only in the result collect cos functions simplifying their coefficients
subsindets (490), specfunc Int , u ! collect value u , cos, simplify

x =

a m cos  t
f0  cos  t

2 2

f0 cos  t

2 2 

f0 cos  t

2 2 

m 
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These forms of the solution, (491) or (492), can be verified by substituting into (489) or by using odetest
odetest (492), (489)

0
_______________________________________

d) A solution to the equation of motion (489) m x
..

= x 
2
 m f0 cos  t can also be 

computed set-by-step, instead of directly calling dsolve with initial conditions as done in (482), by noting 
that it is a linear non-homogeneous equation. For such an equation, a general solution can be computed as 
the sum of the solution xh t  of the homogeneous part, m x

..
t = k x t  plus any particular solution 

xp t  of the complete non-homogeneous equation
x t = xh t xp t

x = xh t xp t

For xh t , we have
subs f0 = 0, x = xh, (489)

m xh
..

t = xh t  
2
 m

dsolve (495)
xh t = c1 sin  t c2 cos  t

As seen in (484) this expression can be rewritten
rhs (496)  = a cos  t

c1 sin  t c2 cos  t = a cos  t

where on the right-hand side there are also two constants a and 
expand (497)

c1 sin  t c2 cos  t = a cos  t  cos a sin  t  sin

PDEtools:-Solve (498), c1, c2 , independentof = t

c1 = a sin , c2 = a cos

Therefore
subs (499), (496)

xh t = a cos  t  cos a sin  t  sin

combine (500)
xh t = a cos  t

For xp t , any particular solution of (489) m x
..

= x 
2
 m f0 cos  t  will suffice. Search for 

a solution with the same frequency  entering F0 t

xp t = b cos  t  

xp t = b cos  t

Insert this into the equation of movement (489) and solve for b
eval (489), x t = rhs (502)
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(205)(205)

(510)(510)

(476)(476)

(504)(504)

(512)(512)

(222)(222)

(242)(242)

(503)(503)

(267)(267)

(88)(88)

(195)(195)

(456)(456)

(180)(180)

(511)(511)

(103)(103)

(176)(176)

(286)(286)

(506)(506)

(232)(232)

(299)(299)

(50)(50)

(505)(505)

(369)(369)

(507)(507)

o. o. 

(485)(485)

(508)(508)

(346)(346)

(465)(465)

(133)(133)

(441)(441)

m b 
2
 cos  t = b cos  t  

2
 m f0 cos  t

PDEtools:-Solve (503), b, independentof = t  

b =
f0

m 
2 2

So for xp t  we get
subs (504), (502)

xp t =
f0 cos  t

m 
2 2

The general solution to (489) m x
..

= x 
2
 m f0 cos  t  can then be written as

subs (500), (505), (494)

x = a cos  t  cos a sin  t  sin
f0 cos  t

m 
2 2

collect combine (506) , cos, simplify

x = a cos  t
f0 cos  t

m 
2 2

This solution can be verified by substituting into (489) or by using odetest
odetest (507), (489)

0
_______________________________________

e) In the case of resonance, when = , the solution (506) is not valid. Still, a valid solution can be 
computed from (506) by taking limits, though a direct approach leads nowhere
Assume m 0, 0, 0, f0 0, a real, b real

m:: 0, , :: 0, , :: 0, , f0:: 0, , a::real , b::real

limit (507), =  

x = lim
!

a cos  t
f0 cos  t

m 
2 2

This limit, however, can be computed by applying the L'Hopital rule. Split the right-hand side into 
numerator and denominator

f, g  numer, denom rhs (507)

f, g cos  t  a 
2
 m a m 

2
 cos  t f0 cos  t , m 

2 2

Since the limit of both f and g when  !  exists
limit f, =  

f0 cos  t

limit g, =   



(82)(82)

(515)(515)

(517)(517)

(339)(339)

(97)(97)

(376)(376)

(513)(513)

(27)(27)

(521)(521)

(290)(290)

(444)(444)

(413)(413)

(111)(111)

(514)(514)

(205)(205)

(476)(476)

(222)(222)

(242)(242)

(503)(503)

(267)(267)

(88)(88)

(195)(195)

(516)(516)

(520)(520)

(456)(456)

(180)(180)

(103)(103)

(176)(176)

(286)(286)

(518)(518)

(232)(232)

(299)(299)

(50)(50)

(369)(369)

o. o. 

(485)(485)

(346)(346)

(465)(465)

(133)(133)

(441)(441)

(519)(519)

0
the limit (510) can be computed by taking the ratio of the derivatives of f and g
limit diff f, , =  

2 a cos  t  m f0 t sin  t

limit diff g, , =   
2 m 

Collect the terms in sin and cos for readability

collect lhs (510) =
(514)
(515)

, sin, cos

x =
f0 t sin  t

2  m
a cos  t

This solution can be verified: the differential equation in the case of resonance is
subs  = , (489)

m x
..

= x 
2
 m f0 cos  t

odetest (516), (517)
0

_______________________________________

f) The solution above for =   can be computed directly by applying dsolve to the differential equation 
of the resonance case (517) 
dsolve (517)

x = sin  t  c2 cos  t  c1

f0 2  t sin  t cos  t

4 
2
 m

To adjust the integration constants c1  and c2  in the above to match the compact solution (516) that was 
computed interactively, start by expanding the difference of these two solutions
expand (516) (519)
0 = a cos  t  cos a sin  t  sin sin  t  c2 cos  t  c1

f0 cos  t  cos

4 
2
 m

f0 sin  t  sin

4 
2
 m

Now solve this equation for c1, c2  independent of t
PDEtools:-Solve (520), c1, c2 , independentof = t

c1 =
4 a cos  

2
 m cos  f0

4 
2
 m

, c2 =
4 a sin  

2
 m sin  f0

4 
2
 m

Substitute and simplify to get (516)
subs (521), (519)



(82)(82)

(339)(339)

(97)(97)

(376)(376)

(513)(513)

(27)(27)

(290)(290)

(444)(444)

(413)(413)

(111)(111)

(205)(205)

(523)(523)

(476)(476)

(522)(522)

(222)(222)

(242)(242)

(503)(503)

(267)(267)

(88)(88)

(195)(195)

(456)(456)

(180)(180)

(103)(103)

(176)(176)

(286)(286)

(525)(525)

(232)(232)

(299)(299)

(50)(50)

(369)(369)

o. o. 

(485)(485)

(346)(346)

(465)(465)

(133)(133)

(524)(524)

(441)(441)

x =
sin  t  4 a sin  

2
 m sin  f0

4 
2
 m

cos  t  4 a cos  
2
 m cos  f0

4 
2
 m

f0 2  t sin  t cos  t

4 
2
 m

collect combine (522) , sin, cos

x =
f0 t sin  t

2  m
a cos  t

 

Oscillations of systems with many degrees of freedom

Problem
Formulate the equations of motion for the free oscillations of a system with n degrees of freedom as

ma, c x
..

a ka, c xa = 0

where xa  represents the displacement of the ath  generalized coordinate qa , the index a runs from 1 to n 
and there is an implicit sum over repeated indices (Einstein's convention).

Solution

restart;
with Physics : with Vectors :
CompactDisplay x t

x t  will now be displayed as x

Denoting the generalized coordinates by qa , the potential energy U qa  can be expanded in series around
the minimums qa0 . Since the movement consist only in small displacements xa = qa qa0  around qa0 , it 
is sufficient to keep terms in the expansion up to order 2, resulting in an expression analogous to 

U =
1
2

 k x 2  of the 1-dimensional case:

U =
1
2

 Sum Sum k a, b  x a t  x b t , i = 1 ..n , j = 1 ..n  

U = j = 1

n

i = 1

n

ka, b xa xb

2
Likewise, for the kinetic energy, 

T = 
1
2

Sum Sum A a, b q0  diff x a t , t  diff x b t , t , a = 1 ..n , b = 1 ..n



(82)(82)

(339)(339)

(97)(97)

(376)(376)

(513)(513)

(27)(27)

(290)(290)

(444)(444)

(413)(413)

(111)(111)

(531)(531)

(529)(529)

(205)(205)

(476)(476)

(522)(522)

(222)(222)

(242)(242)

(503)(503)

(267)(267)

(88)(88)

(195)(195)

(456)(456)

(180)(180)

(526)(526)

(103)(103)

(176)(176)

(286)(286)

(232)(232)

(299)(299)

(527)(527)

(50)(50)

(369)(369)

(528)(528)

o. o. 

(485)(485)

(346)(346)

(465)(465)

(133)(133)

(530)(530)

(441)(441)

T = b = 1

n

a = 1

n

Aa, b q0  x
.
a x

.
b

2
where we take the Aa, b  at the minimums q0  and denote them as mi, j
subs Aa, b q0 = m a, b , (526)

T = b = 1

n

a = 1

n

ma, b x
.
a x

.
b

2
Both ka, b  and ma, b  can be split into symmetric and antisymmetric parts, with the antisymmetric parts 
canceling out in view of the symmetric character of xa xb  in U and x

.
ax
.
b  in T. Therefore, we can take ka, b  

and ma, b  as symmetric without any loss of generality.

Before proceeding, note the similarity in notation between the three formulas (525) to (527) for T and U
and tensor notation. In T and U the xa  describe independent displacements, so one can think of xa  as a 
tensor in an Euclidean space of displacements of generic abstract dimension n, with KroneckerDelta as the
metric. It is then simpler to write the Lagrangian using tensor notation with a generic type of index (that 
admits and abstract n-dimension). For this purpose, introduce lowercaselatin indices from a to h to 
represent generic indices, and when necessary use KroneckerDelta as the metric.
Setup genericindices = lowercaselatin_ah

genericindices = lowercaselatin_ah
Now introduce the tensors while making sure to indicate ma, b  and ka, b  are symmetric (passing xa  
together is not a problem, it has only one index)
Define x a , m a, b , k a, b , symmetric

Defined objects with tensor properties

, , , g
,

, ka, b, ma, b, xa,
, , ,

The Lagrangian L = T U  can now be written as

L  
1
2

m a, b  diff x a t , t  diff x b t , t k a, b  x a t  x b t

L
ma, b x

.
a x

.
b

2

ka, b xa xb

2
where Einstein's summation rule for repeated indices is used. Einstein's rule is taken into account by the 
system when differentiating, computing products and simplifying tensor indices. The simplest way to 
compute the Lagrange equations is to use the LagrangeEquations  command
LagrangeEquations L, x

ka, c xa ma, c x
..

a = 0

The same result can be computed via 
t

L
x
.
c

 =
L
xc

. Although not necessary, enclose the operation 

with forward quotes to delay its evaluation in order to see what is being computed
' %diff %diff L, diff x c t , t , t  = %diff L, x c t  '



(82)(82)

(339)(339)

(534)(534)

(97)(97)

(376)(376)

(513)(513)

(27)(27)

(290)(290)

(444)(444)

(533)(533)

(413)(413)

(111)(111)

(205)(205)

(476)(476)

(522)(522)

(222)(222)

(242)(242)

(503)(503)

(267)(267)

(88)(88)

(195)(195)

(456)(456)

(180)(180)

(526)(526)

(532)(532)

(103)(103)

(176)(176)

(286)(286)

(232)(232)

(299)(299)

(50)(50)

(369)(369)

o. o. 

(485)(485)

(346)(346)

(465)(465)

(133)(133)

(441)(441)

t
dL
dx

.
c

=
dL
dxc

value (532)
ma, b x

..
a b, c

2

ma, b x
..

b a, c

2
=

ka, b xa b, c

2

ka, b xb a, c

2
Simplifying tensor indices,
Simplify (533)

ma, c x
..

a = ka, c xa

 
which is the same as (531).

Rigid-body motion

A rigid body is one where (in approximation) the distances between the body's parts remain unchanged. In
what follows, for simplicity, the body is considered as discrete set of particles; the formulas for a
continuous body can be obtained from those by replacing the masses mi  of each particle by r  dV , 

where r  is the mass density as a function of the position and dV  is the volume element, whose 
integration represent the body's volume. 

This problem is systematically treated by using two reference systems: an inertial one K, where the 
observer is, and another one K', rigidly attached to the body, that moves with it and thus it is typically non-
inertial. It is customary (not necessary) to place the origin R t  of K'  at the body's center of mass . 

A rigid body is thus a system with six degrees of freedom: three indicating the position R t  of the center 
of mass plus three angles specifying the orientation of the axes of K' with respect to those of K.

Angular velocity

Problem
a) Show, using graphs, that the velocity v  of a point P of a body, measured in an inertial reference system
K, can be written as 

v = V r'
where V is the velocity of the origin of K', a frame of reference attached to the body's center of mass, 

=
.

t   is the body's angular velocity (its instantaneous counter-clockwise rotation speed around 
some axis in the direction of a unit vector ) and r'   is the distance from the center of mass (origin of K') 
to the point P.
b) Derive algebraically the same result of a) , using the fact that vectors are defined up to parallel 
translation and so r  and r'  are related by a rotation matrix a, b  which, as all rotation matrices, is 
orthogonal.



(82)(82)

(339)(339)

(97)(97)

(376)(376)

(513)(513)

(27)(27)

(290)(290)

(444)(444)

(536)(536)

(413)(413)

(111)(111)

(205)(205)

(476)(476)

(522)(522)

(222)(222)

(242)(242)

(503)(503)

(267)(267)

(88)(88)

(195)(195)

(456)(456)

(180)(180)

(526)(526)

(532)(532)

(103)(103)

(176)(176)

(286)(286)

(537)(537)

(232)(232)

(299)(299)

(50)(50)

(369)(369)

o. o. 

(535)(535)

(485)(485)

(346)(346)

(465)(465)

(133)(133)

(441)(441)

Solution

restart;
with Physics :
with Physics:-Vectors :

In the solution of this problem it is convenient to keep the dependency on time t explicit.

a) The position of any point P of the body is represented in K by r t , and in K'  by r' t  . The origin of
K' is located at R, so

That is,
r_ t = R_ t r '_ t  

r t = R t r' t

Differentiating and introducing the velocity v' t in K'
diff (535), t

r
.

t = R
.

t r'
.

t
subs diff r '_ t , t  = v '_ t , (536)

r
.

t = R
.

t v' t
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(513)(513)

(27)(27)

(290)(290)

(540)(540)

(444)(444)

(413)(413)

(111)(111)

(205)(205)

(476)(476)

(522)(522)

(222)(222)

(242)(242)

(503)(503)

(267)(267)

(88)(88)

(195)(195)

(456)(456)

(180)(180)

(538)(538)

(526)(526)

(532)(532)

(103)(103)

(176)(176)

(286)(286)

(232)(232)

(299)(299)

(50)(50)

(369)(369)

o. o. 

(485)(485)

(346)(346)

(465)(465)

(133)(133)

(441)(441)

The vector v' t can be written as t r' t  as is clear from this drawing:

where  r'  =  r' , so dividing by  t and denoting =
 
 t

we get

v '_ t = Omega_ t  &x r '_ t

v' t = t r' t
Hence,
subs (538), (537)

r
.

t = R
.

t t r' t
_______________________________________

b) This formula (539) can be derived algebraically in different ways. In what follows we opt for using 
tensor notation. First, the translation of the center of mass (vector R) does not change the orientation of the
axes of the frame K' rigidly attached to the body. To simplify things, then, assume the origins of K and K' 
coincide; the relation (535) between r  and r'  becomes
subs R_ t  = 0, (535)

r t = r' t



(82)(82)

(339)(339)

(97)(97)

(376)(376)

(513)(513)

(27)(27)

(290)(290)

(543)(543)

(444)(444)

(413)(413)

(111)(111)

(205)(205)

(545)(545)

(476)(476)

(522)(522)

(222)(222)

(242)(242)

(503)(503)

(267)(267)

(88)(88)

(542)(542)

(195)(195)

(547)(547)

(456)(456)

(180)(180)

(526)(526)

(532)(532)

(103)(103)

(176)(176)

(286)(286)

(232)(232)

(299)(299)

(50)(50)

(541)(541)

(546)(546)

(369)(369)

o. o. 

(485)(485)

(544)(544)

(346)(346)

(465)(465)

(133)(133)

(441)(441)

The body is assumed to be rotating around some axis (the direction of the vector   of the drawing 
above), so the components of these two vectors r  and r'  are linearly related through a 3D rotation matrix. 
To express that relation using tensors, set lowercaselatin to denote su3matrixindices , and define four 
tensors with the components of the vectors r , r',  and the rotation matrix a, b
Setup su3matrixindices = lowercaselatin, tensors = r, r ', Omega, omega  

su3matrixindices = lowercaselatin, tensors = , , r, r', , , , g
,

,
, , ,

Note that expanding r t  in an orthogonal basis  r a  attached to K
r t = ra t    r a , 

the components ra t depend on t while the unit vectors r a of the basis are constant. On the other hand, 
expanding the same vector in K' the components are constant (the frame K' is rigidly attached to the body 
and P is a point of it) while the orientation of the basis of unit vectors r'a  of K' , seen from K, varies with 
the time

r t = r'a   r'a t

The relation r t = r' t  can then be written as a linear relation between the non-constant components 
ra t  in K and the constant components r'a  in K' involving a 3D rotation matrix a, b t
r a t  = omega a, b t  r ' b

ra t = a, b t  r'b
Differentiating with respect to t,
diff (542), t

r
.
a t =

.
a, b t  r'b

The components r'b  on the right hand side can also be expressed in terms of ra t  without the derivative 

r
.
a t . For that, multiply (542) , from the left, by the inverse matrix b, a

-1
. Since  is a rotation matrix, it 

is orthogonal and so its inverse is equal to its transpose, b, a
-1

= a, b ,
omega a, b t (542)

a, b t  ra t = a, b t  a, c t  r'c

Introducing the fact that a, b  and b, a  are inverses of each other,
omega b, a t omega b, c t  = KroneckerDelta a, c  

b, a t  b, c t = a, c

SubstituteTensor (545), (544)

a, b t  ra t = b, c r'c
Simplify (546)

a, b t  ra t = r'b
resulting in the components r'b  expressed in terms of the ra t
isolate (547), r ' b



(82)(82)

(339)(339)

(556)(556)

(97)(97)

(548)(548)

(376)(376)

(551)(551)

(513)(513)

(555)(555)

(27)(27)

(290)(290)

(444)(444)

(552)(552)

(550)(550)

(413)(413)

(111)(111)

(554)(554)

(205)(205)

(476)(476)

(522)(522)

(222)(222)

(242)(242)

(503)(503)

(267)(267)

(88)(88)

(195)(195)

(456)(456)

(180)(180)

(526)(526)

(532)(532)

(103)(103)

(176)(176)

(286)(286)

(553)(553)

(232)(232)

(299)(299)

(549)(549)

(50)(50)

(369)(369)

o. o. 

(485)(485)

(557)(557)

(346)(346)

(465)(465)

(133)(133)

(441)(441)

r'b = a, b t  ra t

For the velocity r
.
a t  we then have

SubstituteTensor (548), (543)
r
.
a t =

.
a, b t  c, b t  rc t

Now, for every orthogonal matrix a, b t , the product 
.

a, b t  b, c t  is antisymmetric. To see that, 

consider again  
-1

= , 
omega a, b t omega c, b t  = KroneckerDelta a, c

a, b t  c, b t = a, c

Differentiating,
diff (550), t

.
a, b t  c, b t a, b t  

.
c, b t = 0

The sum on the left-hand side is actually the symmetric part of  
.

b, a t  c, b t
op 1, lhs (551)

.
a, b t  c, b t

Symmetrize (552)   2
.

a, b t  c, b t a, b t  
.

c, b t

and since the symmetric part of 
.

b, a t  c, b t is equal to 0 (equation (551)) if follows that 
.

a, b t  c, b t  is antisymmetric in a,c. Then, 
.

a, b t  c, b t  can be expressed in terms of the totally 
antisymmetric LeviCivita tensor times another tensor of only one index, the components of the rotation 
vector , defined as a tensor at the beginning in (541)
(552) = LeviCivita a, c, b Omega b

.
a, b t  c, b t =

a, b, c
 b

SubstituteTensor (554), (549)
r
.
a t =

a, b, c
 b rc t

Multiplying by the basis of unit vectors r a
_r_ a (555)

r a r
.
a t = r a 

a, b, c
 b rc t

This result can be written using vector notation according to r a  r
.
a t = r

.
t  and  

r a  
a, b, c

 b  rc t = t r t

subs r
.
a t  =  r

.
t , 

a, b, c
 b rc t  = t r t , (555)

r
.

t = t r t
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(513)(513)
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(27)(27)

(290)(290)

(444)(444)

(413)(413)
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(205)(205)
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(476)(476)

(522)(522)

(222)(222)

(242)(242)

(503)(503)

(267)(267)

(88)(88)

(195)(195)

(456)(456)

(180)(180)

(526)(526)

(532)(532)

(103)(103)

(176)(176)

(286)(286)

(232)(232)
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(558)(558)

(50)(50)

(369)(369)

o. o. 

(485)(485)

(346)(346)

(465)(465)

(133)(133)

(441)(441)

and since in this calculation the origins of K and K'  coincide, r t = r' t
subs r_ = r '_, (557)

r'
.

t = t r' t

Finally, substituting this result into (536) r
.

t = R
.

t r'
.

t ,
subs (558), (536)

r
.

t = R
.

t t r' t
 
which is the formula we wanted to derive.

Inertia tensor

Problem
a) Show that using v = V r' , derived in Angular velocity for the velocity v  of a point P of a rigid 
body in terms of  and the position r'  of P viewed from the center of mass R, the kinetic energy of the 
rigid body can be written in terms of the positions r'  of the n particles (not their velocities), the velocity of 
the center of mass V and angular velocity  as

T =
1
2

 V
2
 

i = 1

n
1
2

 mi 
2
 r'i

2 1
2

 mi r'i
2

b) Use tensor notation to show that this result can be rewritten as

T =
1
2

 V t
2
 

1
2

 
a, b

  b a

where

a, b
=

i = 1

n

mi ri, c
2 a, b r'i, a r'i, b

is the Inertia tensor, a  represents the components of the vector  and r'i, a  represents the components of

the position vector r'i  of the ith  particle.

Solution

restart;
with Physics:-Vectors :
CompactDisplay r_, r '_, Omega_, R_, V_ t

r t  will now be displayed as r

r' t  will now be displayed as r'

t  will now be displayed as 

R t  will now be displayed as R

V t  will now be displayed as V



(82)(82)

(339)(339)

(561)(561)

(97)(97)

(548)(548)

(376)(376)

(513)(513)

(27)(27)

(290)(290)

(444)(444)

(413)(413)

(111)(111)

(564)(564)

(205)(205)

(566)(566)

(562)(562)

(476)(476)

(522)(522)

(222)(222)

(242)(242)

(503)(503)

(267)(267)

(88)(88)

(195)(195)

(456)(456)

(180)(180)

(526)(526)

(532)(532)

(103)(103)

(565)(565)

(176)(176)

(286)(286)

(232)(232)

(299)(299)

(50)(50)

(369)(369)

o. o. 

(485)(485)

(346)(346)

(465)(465)

(133)(133)

(441)(441)

(563)(563)

a) The kinetic energy in K is

T =
1
2

 Sum m i diff r_ i t , t 2, i = 1 ..n

T = i = 1

n

mi r
.
i

2

2
where the system is assumed to be discrete an consisting of n particles, each of which has mass mi . From 

(539), each pair r i, r'i  are related through
subs r_ = r_ i , r '_ t  = r '_ i t , (539)

r
.
i = R

.
r'i

where as in the previous problem R is the position of the center of mass viewed from K. Substituting this 
relation into the expression for the kinetic energy,
subs (562), (561)

T = i = 1

n

mi R
.

r'i
2

2
Expanding the sum, power and vector products all in one go
expand (563)

T =
R
. 2

 
i = 1

n

mi

2
R
.

i = 1

n

mi r'i

2
 

i = 1

n

mi r'i
2

2

i = 1

n

mi r'i
2

2

Denoting 
i = 1

n

mi =  and introducing the velocity of the center of mass (copy the sum from above, 

paste, then edit)

subs
i = 1

n

mi = , diff R_ t , t = V_ t , (564)

T =
V

2
 

2
V

i = 1

n

mi r'i

2
 

i = 1

n

mi r'i
2

2
i = 1

n

mi r'i
2

2

The second term of the right-hand side is equal to zero:
op 2, rhs (565)

V
i = 1

n

mi r'i



(82)(82)

(339)(339)

(97)(97)

(548)(548)

(376)(376)

(513)(513)

(27)(27)

(290)(290)

(444)(444)

(413)(413)

(111)(111)

(567)(567)

(205)(205)

(476)(476)

(522)(522)

(222)(222)

(242)(242)

(503)(503)

(267)(267)

(88)(88)

(195)(195)

(456)(456)

(180)(180)

(526)(526)

(572)(572)

(532)(532)

(568)(568)

(103)(103)

(176)(176)

(286)(286)

(232)(232)

(569)(569)

(299)(299)

(571)(571)

(50)(50)

(369)(369)

o. o. 

(485)(485)

(346)(346)

(465)(465)

(133)(133)

(441)(441)

(570)(570)

Omega_ t r '_ i t  =  `%&x` r '_ i t , %Omega_ t

r'i = r'i
were in the above we use the inert cross product `%&x`  to keep the automatic reordering of the vectors 
being multiplied
subs (567), (566)

V
i = 1

n

mi r'i

Expanding now the product,
expand (568)

V 
i = 1

n

mi r'i

and since the origin of K' is at the center of mass,
i = 1

n

mi r'i = 0. The kinetic energy becomes

subs (566) = 0, (565)

T =
V

2
 

2

2
 

i = 1

n

mi r'i
2

2
i = 1

n

mi r'i
2

2

Combining the sums, and at the same time factor out 
1
2

 and mi , instead of combine (570), Sum  one 

can use
1
2

 combine 2 (570), Sum

T = i = 1

n

mi 
2
 r'i

2
mi r'i

2

2
V

2
 

2
simplify (571)

T = i = 1

n

mi 
2
 r'i

2
mi r'i

2

2
V

2
 

2
This is the expected result, factored out as traditionally shown in textbooks.

_______________________________________

b) In order to rewrite this result (571) for the kinetic energy T in tensorial form, load Physics for the tools 
for tensor computations
with Physics :

The problem at hands is one of representation. The vector  can be represented by a tensor a  with a

spaceindex a running from 1 to the 3 corresponding to each of the components of . Representing the 



(82)(82)

(339)(339)

(97)(97)

(548)(548)

(376)(376)

(513)(513)

(27)(27)

(290)(290)

(444)(444)

(576)(576)

(573)(573)

(413)(413)

(111)(111)

(205)(205)

(476)(476)

(522)(522)

(577)(577)

(222)(222)

(242)(242)

(503)(503)

(267)(267)

(88)(88)

(195)(195)

(456)(456)

(180)(180)

(526)(526)

(574)(574)

(532)(532)

(103)(103)

(176)(176)

(286)(286)

(232)(232)

(299)(299)

(50)(50)

(578)(578)

(369)(369)

o. o. 

(579)(579)

(485)(485)

(346)(346)

(465)(465)

(133)(133)

(575)(575)

(441)(441)

position vector r'i  using tensor notation, however, is trickier: there is one index, a, that also runs through 

the space dimensions corresponding to the components of r'i  but there is also another index, i, identifying 
a particle among n of them, where n is abstract. To represent the index i, one can use tensors with
genericindices, which run from 1 to a generic unspecified dimension. So the components of r'i  can be 
properly represented by a tensor with two indices of different kinds: r'i, a .

So set lowercase latin indices from a to h to represent spaceindices and lowercase latin from i to s 
representing genericindices. On the way, set the tensors representing the components of  and r'i
Setup spaceindices = lowercase_ah, generic = lowercase_is, tensors = Omega a , r ' i, a

* Partial match of 'generic' against keyword 'genericindices' 

_______________________________________________________

genericindices = lowercaselatin_is, spaceindices = lowercaselatin_ah, tensors = , a, , ,

g
,

, a, b, r'i, a,
, , ,

Recalling the result of item a)
(572)

T = i = 1

n

mi 
2
 r'i

2
mi r'i

2

2
V

2
 

2
The product
Omega_ t r'_i t

r'i
can be represented as
(575) = Omega a  r ' i, a

r'i = a r'i, a

where for simplicity we omitted the time dependency of a t  since in this problem there is no need for 
differentiating with respect to time, and recall that the components r'i, a  of the position vector o a point of 
the body - measured from the K' which is a frame rigidly attached to the body - are constant. Squaring,
(576)2 

r'i
2

= a r'i, a b r'i, b

For r'i
2
 and 

2

Norm r'_i t 2 = r ' i, c 2

r'i
2

= r'i, c
2

Norm Omega_ t 2 = Omega a 2

2
= a

2



(82)(82)

(339)(339)

(587)(587)

(586)(586)

(97)(97)

(548)(548)

(376)(376)

(513)(513)

(581)(581)

(584)(584)

(27)(27)

(290)(290)

(444)(444)

(413)(413)

(111)(111)

(205)(205)

(476)(476)

(522)(522)

(222)(222)

(242)(242)

(503)(503)

(267)(267)

(88)(88)

(195)(195)

(456)(456)

(180)(180)

(585)(585)

(526)(526)

(583)(583)

(532)(532)

(103)(103)

(580)(580)

(176)(176)

(286)(286)

(232)(232)

(299)(299)

(50)(50)

(582)(582)

(369)(369)

o. o. 

(485)(485)

(346)(346)

(465)(465)

(133)(133)

(441)(441)

Having in mind that the result we want includes factoring out a b , rewrite the right-hand side of the 
above as 
rhs (579) = KroneckerDelta a, b  Omega a  Omega b  

a
2

= a, b a b

Substituting sequentially all these vector ! tensor relations,
subs (577), (578), (579), (580), (571)

T = i = 1

n

mi a, b a b r'i, c
2 mi a r'i, a b r'i, b

2
V

2
 

2

Expanding, collecting  and combining the coefficients we get
expand (581)

T =
a, b a b 

i = 1

n

mi r'i, c
2

2

a b 
i = 1

n

mi r'i, a r'i, b

2
V

2
 

2
collect (582), Omega a , Omega b , combine

T =
i = 1

n
1
2

 mi r'i, c
2  a, b

1
2

 mi r'i, a r'i, b  b a
V

2
 

2

To get this result in more compact form as frequently shown in textbooks one can tweak the input above 
as

1
2

 collect 2 (582), Omega a , Omega b , factor@combine  

T = i = 1

n

mi r'i, c
2  a, b r'i, a r'i, b  b a

2
V

2
 

2

where the coefficient of the product a b  times 2 is the inertia tensor:

a, b
= 2  Coefficients rhs (584) , Omega a  Omega b , 1

a, b
=

i = 1

n

mi r'j, c
2  a, b r'i, a r'i, b

subs j = i, (585)

a, b
=

i = 1

n

mi r'i, c
2  a, b r'i, a r'i, b

and T can be written as
Substitute rhs = lhs (586) , (584)

T = a, b
 b a

2
V

2
 

2
 



(82)(82)

(339)(339)

(97)(97)

(548)(548)

(376)(376)

(513)(513)

(27)(27)

(290)(290)

(444)(444)

(588)(588)

(413)(413)

(111)(111)

(205)(205)

(476)(476)

(522)(522)

(222)(222)

(242)(242)

(503)(503)

(267)(267)

(591)(591)

(88)(88)

(195)(195)

(456)(456)

(180)(180)

(589)(589)

(526)(526)

(593)(593)

(532)(532)

(103)(103)

(176)(176)

(592)(592)

(286)(286)

(232)(232)

(299)(299)

(50)(50)

(369)(369)

o. o. 

(590)(590)

(485)(485)

(346)(346)

(465)(465)

(133)(133)

(441)(441)

 
Problem
Determine the Inertia tensor corresponding to a triatomic molecule that has the form of an isosceles triangle
with two masses m1 in the extremes of the base and a mass m2 in the third vertex. The distance between 
the two masses m1 is equal to a, and the height of the triangle is equal to h.

Solution

restart;
with Physics, KroneckerDelta :
with Physics:-Vectors :

The general formula for the Inertia tensor is given by (note the use of the abbreviation kd_ for
KroneckerDelta)
InertiaTensor  %sum m k   Norm r_ k 2  kd_ i, j   Component r_ k , i  Component r_ k ,

 j , k = 1 ..N  

InertiaTensor
k = 1

N

mk r k
2 i, j r k i

 r k j

where N is the number of particles, mk  is the mass of each particle, r k  is its position in a reference system 
with the origin at the "center of mass", r k i

 is the component in the ith direction of the position vector 

associated to the kth particle in the reference system, and i, j  is the Kronecker delta, part of Physics . Set 
this definition of the InertiaTensor to be an indexing function for the InertiaTensor matrix.
IT unapply InertiaTensor, i, j  

IT i, j "
k = 1

N

mk r k
2

i, j r k i
r k j

For example, for a component in the diagonal, we have
IT 1, 1  

k = 1

N

mk r k
2 r k 1

2

and outside of the diagonal we have
IT 1, 2  

k = 1

N

mk r k 1
 r k 2

At this point we can proceed to setting the particularities of this problem. The number of particles is 3.
N 3 

N 3
Hence the matrix is
IT_Matrix  Matrix 3, 3, IT  
IT_Matrix



(82)(82)

(339)(339)

(97)(97)

(548)(548)

(376)(376)

(513)(513)

(27)(27)

(290)(290)

(444)(444)

(413)(413)

(111)(111)

(205)(205)

(476)(476)

(522)(522)

(222)(222)

(242)(242)

(503)(503)

(267)(267)

(88)(88)

(195)(195)

(596)(596)

(598)(598)

(456)(456)

(180)(180)

(594)(594)

(526)(526)

(593)(593)

(532)(532)

(103)(103)

(176)(176)

(286)(286)

(232)(232)

(595)(595)

(599)(599)

(299)(299)

(50)(50)

(597)(597)

(369)(369)

o. o. 

(485)(485)

(346)(346)

(465)(465)

(133)(133)

(441)(441)

k = 1

3

mk r k
2 r k 1

2

k = 1

3

mk r k 1
 r k 2 k = 1

3

mk r k 1
 r k 3

k = 1

3

mk r k 1
 r k 2 k = 1

3

mk r k
2 r k 2

2

k = 1

3

mk r k 2
 r k 3

k = 1

3

mk r k 1
 r k 3 k = 1

3

mk r k 2
 r k 3 k = 1

3

mk r k
2 r k 3

2

Two of the masses are equal
m 3   m 1  

m3 m1

Now choose any system of reference (not at the center of mass) where we are going to project the position
vectors Rk  of each atom as well as the center of mass RCM . The vectors r k  entering the definition of the 

Inertia tensor (588) are related to Rk  and RCM  by
position  r_ k  = R_ k   R_ CM  

position r k = Rk RCM

For Rk , we choose a system of reference with the origin at the middle of the segment connecting the two 
atoms of mass equal to m1. Using Cartesian coordinates, we take the x axis along this segment and the z 
axis passing through the third atom of mass m2. So in this referential, the positions of the three atoms are

R_ 1   
a
2

 _i     # to the left of the origin 

R1
a i
2

R_ 2   h _k           # along the z direction 
R2 h k

R_ 3   
a
2

 _i        # to the right of the origin 

R3
a i
2

Indicate the real objects of this problem so that simplification steps further below can take that into account
Setup real = a, h, m 1 , m 2 , m 3  

* Partial match of 'real' against keyword 'realobjects' 

_______________________________________________________

realobjects = a, h, , r, , , x, y, z, m1, m2

Compute the position of the "center of mass." By definition, it is

R_ CM   
%sum m k  R_ k ,  k = 1 ..N

%sum m k ,  k = 1 ..N
 



(82)(82)

(339)(339)

(97)(97)

(548)(548)

(376)(376)

(513)(513)

(27)(27)

(290)(290)

(444)(444)

(413)(413)

(111)(111)

(603)(603)

(205)(205)

(476)(476)

(522)(522)

(222)(222)

(242)(242)

(503)(503)

(267)(267)

(88)(88)

(602)(602)

(195)(195)

(456)(456)

(180)(180)

(600)(600)

(526)(526)

(593)(593)

(532)(532)

(103)(103)

(176)(176)

(286)(286)

(232)(232)

(299)(299)

(50)(50)

(369)(369)

o. o. 

(601)(601)

(485)(485)

(346)(346)

(465)(465)

(133)(133)

(441)(441)

RCM
k = 1

3

mk Rk

k = 1

3

mk

Evaluating these sums, we have the value of RCM :
R_ CM   value R_ CM  

RCM

m2 h k

2 m1 m2

So these are the positions of the three particles viewed from the center of mass and expressed in terms of 
the known quantities mk, a and h:
seq eval position, k = j , j = 1 ..N  

r 1 =
a i
2

m2 h k

2 m1 m2
, r 2 = h k

m2 h k

2 m1 m2
, r 3 =

a i
2

m2 h k

2 m1 m2

The answer to the problem posed, that is the inertia tensor for this triatomic molecule, is now obtained by 
evaluating the abstract expression for the IT_Matrix at these values of the position vectors r k
IT_answer  simplify eval value IT_Matrix , (602)  

IT_answer

2 m2 h2 m1

2 m1 m2
0 0

0
2 a2 m1

2 m2 a2 4 h2  m1

4 m1 2 m2
0

0 0
m1 a2

2

 

Angular momentum of a rigid body

In the section related to the conservation of angular momentum, the solution to the second Problem  
shows that the value of the angular momentum L  of a system of particles depends on the origin of the 

frame of reference. In this section, it is assumed that the origin is at the center of mass, so 
i = 1

n

mi r i = 0.

Problem
Show, using tensor notation, that in the K' system whose origin is at the center of mass, the components 
L'a  of the angular momentum of a rigid body can be expressed in terms of the inertia tensor 

a, b
 and the 

components of the angular velocity b  as



(82)(82)

(339)(339)

(97)(97)

(548)(548)

(376)(376)

(513)(513)

(27)(27)

(290)(290)

(444)(444)

(413)(413)

(609)(609)

(111)(111)

(205)(205)

(476)(476)

(522)(522)

(222)(222)

(242)(242)

(503)(503)

(267)(267)

(88)(88)

(608)(608)

(195)(195)

(456)(456)

(180)(180)

(600)(600)

(526)(526)

(593)(593)

(532)(532)

(103)(103)

(176)(176)

(286)(286)

(232)(232)

(299)(299)

(50)(50)

(607)(607)

(369)(369)

o. o. 

(605)(605)

(485)(485)

(606)(606)

(346)(346)

(465)(465)

(133)(133)

(441)(441)

(604)(604)

L'a =
a, b

 b

Solution

restart;
with Physics : with Vectors :
CompactDisplay r_, r '_, Omega_, R_, V_ t  

r t  will now be displayed as r

r' t  will now be displayed as r'

t  will now be displayed as 

R t  will now be displayed as R

V t  will now be displayed as V

Denoting r'i  the position vectors of each point of the body viewed from K', the expression of the angular 

momentum L ' is given by
L '_ = Sum m i r '_ i t   diff r '_ t , t , i = 1 ..n

L' =
i = 1

n

mi r'i r'
.

In turn, in Angular velocity is is shown that v' = r'
subs diff r '_ t , t  = Omega_ t  r '_ i t , (605)

L' =
i = 1

n

mi r'i r'i

Expanding only the vector product
subsindets (606), specfunc `&x` , expand

L' =
i = 1

n

mi  r'i
2

r'i  r'i

Introducing tensor notation, as in item b) of this problem for the Inertia tensor, 
Setup spaceindices = lowercase_ah, generic = lowercase_is, tensors = Omega a , r ' i, a  

* Partial match of 'generic' against keyword 'genericindices' 

_______________________________________________________

genericindices = lowercaselatin_is, spaceindices = lowercaselatin_ah, tensors = , a, , ,

g
,

, a, b, r'i, a,
, , ,

L '_ = L ' a , Omega_ t  . r '_ i t  = Omega b r ' i, b  , Norm r '_ i t 2 = r ' i, c 2, r '_ i t = r
' i, a , Omega_ t  = KroneckerDelta a, b Omega b

L' = L'a, r'i = b r'i, b, r'i
2

= r'i, c
2 , r'i = r'i, a, = a, b b

subs (609), (607)  



(82)(82)

(615)(615)

(339)(339)

(97)(97)

(548)(548)

(376)(376)

(513)(513)

(614)(614)

(27)(27)

(613)(613)

(290)(290)

(444)(444)

(413)(413)

(111)(111)

(205)(205)

(476)(476)

(522)(522)

(222)(222)

(242)(242)

(503)(503)

(267)(267)

(88)(88)

(195)(195)

(456)(456)

(180)(180)

(600)(600)

(610)(610)

(526)(526)

(593)(593)

(532)(532)

(612)(612)

(103)(103)

(176)(176)

(286)(286)

(232)(232)

(299)(299)

(50)(50)

(369)(369)

(611)(611)

o. o. 

(485)(485)

(346)(346)

(465)(465)

(133)(133)

(616)(616)

(617)(617)

(441)(441)

L'a =
i = 1

n

mi a, b b r'i, c
2

b r'i, b r'i, a

Expanding, then collecting  and combining the sums in the coefficient
expand (610)

L'a = a, b b 
i = 1

n

mi r'i, c
2

b 
i = 1

n

mi r'i, a r'i, b

collect (611), Omega b , factor@combine

L'a =
i = 1

n

mi r'i, c
2  a, b r'i, a r'i, b  b

Introducing the expression for the inertia tensor,
(586)

a, b
=

i = 1

n

mi r'i, c
2  a, b r'i, a r'i, b

subs rhs = lhs (586) , (612)
L'a =

a, b
 b

 

The equations of motion of a rigid body

A rigid body is a system with six degrees of freedom: three indicating the position R t  plus three angles 
specifying the orientation of the axes of K' with respect to those of K. As discussed in the equations of 
motion for many-particle systems , the two vectorial equations of motion are 
value (182)

P
.

t = Fext

diff L_ t , t  = N_ t

L
.

t = N t
(190) 

N =
i = 1

n

r i f i, ext

 
where P is the total momentum, Fext  is the total external force acting upon the body, f i, ext  is the external 

force acting upon the ith  particle, L the total angular momentum and N  is the total torque.

Problem
Show that the equations of movement of a rigid body can be computed as the Lagrange equations for R 
and  from the Lagrangian 



(82)(82)

(339)(339)

(618)(618)

(97)(97)

(548)(548)

(376)(376)

(513)(513)

(27)(27)

(290)(290)

(444)(444)

(413)(413)

(621)(621)

(111)(111)

(205)(205)

(476)(476)

(522)(522)

(222)(222)

(242)(242)

(503)(503)

(267)(267)

(88)(88)

(195)(195)

(456)(456)

(180)(180)

(600)(600)

(610)(610)

(526)(526)

(593)(593)

(620)(620)

(532)(532)

(103)(103)

(176)(176)

(286)(286)

(232)(232)

(299)(299)

(50)(50)

(369)(369)

o. o. 

(485)(485)

(619)(619)

(346)(346)

(465)(465)

(133)(133)

(441)(441)

L =
1
2

  V
2 1

2
 

a, b
 b a U R,  

where =
i = 1

n

mi  is the total mass, 
a, b

 is the inertia tensor, U R,   is the potential energy for the 

external force Fext , and  =
.

.

Solution

restart;
with Physics:-Vectors :
CompactDisplay R_, V_, Phi_, Omega t

R t  will now be displayed as R

V t  will now be displayed as V

t  will now be displayed as 

t  will now be displayed as 
The required derivation is easy by expressing the Lagrangian in tensor notation from the beginning. In 
what follows, however, with the purpose of illustrating different techniques, Lagrange's equations are 
computed using vectorial notation, only switching to tensor notation at the time of expressing the time 
derivative of the angular momentum.

The kinetic energy T in vectorial form is derived in this problem for the inertia tensor
subs r '_ i t  = r '_ i , (572)

T = i = 1

n

mi t
2
 r'i

2
mi t r'i

2

2
V

2
 

2

Adding the potential energy as a function of the coordinates R (location of the center of mass) and  (the 

rotation axis, so that =
.

), the Lagrangian in vectorial form is given by
L = rhs (619)   U R_ t , Phi_ t

L = i = 1

n

mi t
2
 r'i

2
mi t r'i

2

2
V

2
 

2
U R,

The first equation of movement, for the total momentum P t  is derived as the Lagrange equation for this 
Lagrangian
%diff %diff L, V_ t , t  = %diff L, R_ t

t
dL
dV

=
dL
dR

subs (620), (621)



(82)(82)

(339)(339)

(97)(97)

(548)(548)

(376)(376)

(626)(626)

(513)(513)

(627)(627)

(27)(27)

(290)(290)

(444)(444)

(413)(413)

(111)(111)

(205)(205)

(476)(476)

(522)(522)

(222)(222)

(242)(242)

(503)(503)

(267)(267)

(88)(88)

(195)(195)

(625)(625)

(456)(456)

(180)(180)

(600)(600)

(610)(610)

(526)(526)

(593)(593)

(532)(532)

(623)(623)

(628)(628)

(103)(103)

(176)(176)

(286)(286)

(232)(232)

(299)(299)

(50)(50)

(622)(622)

(369)(369)

o. o. 

(485)(485)

(624)(624)

(346)(346)

(465)(465)

(133)(133)

(441)(441)

t V
i = 1

n

mi t
2
 r'i

2
mi t r'i

2

2
V

2
 

2
U R, =

R

i = 1

n

mi t
2
 r'i

2
mi t r'i

2

2
V

2
 

2
U R,

value %

 V
.

= D1 U R,

On the right-hand side, D1 U R, is the derivative of U R,  with respect to its first argument R, 

equivalent to the gradient taking R as the coordinates, and  V
.

= P
.

t  is the total momentum

subs rhs (623)  = F_ ext t , diff V_ t , t  = 
diff P_ t , t

mu
, (623)

P
.

t = Fext t

Note however that in Maple the Vectors:-Gradient command computes the gradient with respect to 
Cartesian, cylindrical or spherical coordinates, not an arbitrary vector R. If more precision is required, the 
dependency of the potential energy could be expressed in terms of the norm of R, as in 
U Norm R_

U R

in which case differentiating with respect to R is equivalent to the definition of directional derivative
%diff = diff (625), R  

d
dR

U R =
D U R  R

R

The same computation, this time with respect to the coordinates  where =
.

 is the corresponding 
velocity,
%diff %diff L, Omega_ t , t  = %diff L, Phi_ t  

t
dL

d t
=

dL

d
subs (620), (627)

t t
i = 1

n

mi t
2
 r'i

2
mi t r'i

2

2
V

2
 

2
U R,

= i = 1

n

mi t
2
 r'i

2
mi t r'i

2

2
V

2
 

2
U R,

subs sum = Sum, value (628)



(82)(82)

(339)(339)

(97)(97)

(548)(548)

(376)(376)

(634)(634)

(635)(635)

(513)(513)

(27)(27)

(290)(290)

(444)(444)

(629)(629)

(413)(413)

(111)(111)

(636)(636)

(205)(205)

(476)(476)

(522)(522)

(222)(222)

(242)(242)

(503)(503)

(267)(267)

(88)(88)

(633)(633)

(195)(195)

(456)(456)

(180)(180)

(600)(600)

(610)(610)

(630)(630)

(526)(526)

(593)(593)

(532)(532)

(103)(103)

(176)(176)

(286)(286)

(232)(232)

(299)(299)

(50)(50)

(622)(622)

(631)(631)

(369)(369)

o. o. 

(632)(632)

(485)(485)

(346)(346)

(465)(465)

(133)(133)

(441)(441)

i = 1

n

2 mi r'i
2
 
.

t 2 mi 
.

t r'i  r'i

2
= D2 U R,

Switching to tensor notation as done in the other problems, the left-hand side can be rewritten as the time 
derivative of the components L'a  of the angular momentum .
with Physics :
Setup spaceindices = lowercase_ah, generic = lowercase_is, tensors = Omega a , r ' i, a   

* Partial match of 'generic' against keyword 'genericindices' 

_______________________________________________________

genericindices = lowercaselatin_is, spaceindices = lowercaselatin_ah, tensors = , a, , ,

g
,

, a, b, r'i, a,
, , ,

Introducing tensor components for the vectors of (629)
diff Omega_ t , t  . r '_ i  = diff Omega b t , t r ' i, b  ,
diff Omega_ t , t  = KroneckerDelta a, b diff Omega b t  , t , 
Norm r '_ i 2 = r ' i, c 2,
r '_ i = r ' i, a ,
D2 U R_ t , Phi_ t  = Component D2 U R_ t , Phi_ t , a
.

t r'i =
.

b r'i, b,
.

t = a, b 
.

b, r'i
2

= r'i, c
2 , r'i = r'i, a, D2 U R, = D2 U R,

a
eval (629), (631)

i = 1

n

2 mi r'i, c
2  a, b 

.
b 2 mi 

.
b r'i, b r'i, a

2
= D2 U R,

a

expand (632)

a, b 
.

b 
i = 1

n

mi r'i, c
2 .

b 
i = 1

n

mi r'i, a r'i, b = D2 U R,
a

collect (633), diff Omega b t , t , factor@combine

i = 1

n

mi r'i, c
2  a, b r'i, a r'i, b  

.
b = D2 U R,

a

Introducing the expression for the inertia tensor,
(586)

a, b
=

i = 1

n

mi r'i, c
2  a, b r'i, a r'i, b

subs rhs = lhs (586) , (634)

a, b
 
.

b = D2 U R,
a



(82)(82)

(339)(339)

(97)(97)

(548)(548)

(376)(376)

(638)(638)

(513)(513)

(642)(642)

(637)(637)

(27)(27)

(639)(639)

(290)(290)

(444)(444)

(629)(629)

(413)(413)

(111)(111)

(640)(640)

(205)(205)

(476)(476)

(522)(522)

(222)(222)

(242)(242)

(641)(641)

(503)(503)

(267)(267)

(88)(88)

(195)(195)

(456)(456)

(180)(180)

(600)(600)

(610)(610)

(526)(526)

(593)(593)

(532)(532)

(103)(103)

(176)(176)

(286)(286)

(232)(232)

(299)(299)

(50)(50)

(643)(643)

(622)(622)

(369)(369)

o. o. 

(485)(485)

(346)(346)

(465)(465)

(133)(133)

(441)(441)

From the result (614) for the problem of representing the angular momentum of a rigid body in terms of 
the inertia tensor the left-hand side is the derivative of the components of the angular momentum
(614) 

L'a =
a, b

 b

subs Omega b  = Omega b t , L ' a  = L ' a t , (614)
L'a t =

a, b
 b

diff (638), t
L'
.

a t =
a, b

 
.

b

subs rhs = lhs (639) , (636)

L'
.

a t = D2 U R,
a

The right-hand side is the ath  component of the variation of the potential energy U R,  with respect to 
. A graphics analysis of D2 U R,  and algebraic derivation as done in the problem of the section

Angular velocity results in 
D2 U R_ t , Phi_ t = R_ t  F_ ext

D2 U R, = R Fext

subs (641), (640)
L'
.

a t = R Fext a

As shown in this problem of the section on the equations of motion for many-particle systems , the right-
hand side of this result of that is the total torque N t , resulting in the second equation of movement of a 
rigid body, for the time derivative of the angular momentum 
subs rhs (642)  = N_ a t , (642)

L'
.

a t = Na t

 

Non-inertial coordinate systems

When describing the motion of a particle as seen from a non-inertial reference system (e.g. a rotating 
planet, like the Earth), we also see "acceleration" that is not due to any force but instead to the fact that the 
reference system itself is accelerated. 

Problem
Consider a non-inertial reference system K' which moves with non-constant translational velocity V t  
with regards to an inertial reference system K0 . 
a) Show that the Lagrangian L' in K' is given by 

L ' =
1
2

 m v' m W r' U

where W = V
.
 is the translational acceleration of the frame K'  as seen from K0 .



(644)(644)

(82)(82)

(339)(339)

(97)(97)

(548)(548)

(376)(376)

(513)(513)

(27)(27)

(290)(290)

(444)(444)

(629)(629)

(413)(413)

(111)(111)

(646)(646)

(205)(205)

(476)(476)

(522)(522)

(222)(222)

(242)(242)

(503)(503)

(267)(267)

(88)(88)

(195)(195)

(456)(456)

(180)(180)

(600)(600)

(610)(610)

(526)(526)

(593)(593)

(532)(532)

(647)(647)

(103)(103)

(176)(176)

(286)(286)

(232)(232)

(648)(648)

(299)(299)

(50)(50)

(622)(622)

(369)(369)

(645)(645)

o. o. 

(485)(485)

(346)(346)

(465)(465)

(133)(133)

(441)(441)

b) Show that the Lagrange equation derived from this Lagrangian in the frame K'  is

m v'
.

t = U m W

Solution

restart;
with Physics:-Vectors :

a) The starting point is the Lagrangian in the frame K0 . Denoting vectors and the Lagrangian in K0  with 
the suffix 0, L0  is given by
CompactDisplay r0_, v0_, r '_, v '_, V_, W_ t

r 0 t  will now be displayed as r 0

v0 t  will now be displayed as v0

r' t  will now be displayed as r'

v' t  will now be displayed as v'

V t  will now be displayed as V

W t  will now be displayed as W

L0 =
1
2

m v0_ t 2 U r0_ t

L0 =
m v0

2

2
U r 0

The velocities of the particle in the frames K0  and K' are related by
v0_ t = v '_ t   V_ t

v0 = v' V

from which the Lagrangian L '  is given by
subs (646), U r0_ t  = U r '_ t , L0 = L ', (645)

L' =
m v' V

2

2
U r'

Note the use of L '  in the above - in Maple 2023, when you load Physics, the prime does not represent 
differentiation, so that primed variables can be used to represent transformations, coordinates or vectors of
different systems. Having primes represent differentiation can be restored via 
Setup primedvariables = false .

expand (647)

L' =
m v'

2

2
m v' V

m V
2

2
U r'



(82)(82)

(649)(649)

(652)(652)

(339)(339)

(97)(97)

(548)(548)

(376)(376)

(513)(513)

(27)(27)

(290)(290)

(444)(444)

(629)(629)

(413)(413)

(111)(111)

(205)(205)

(655)(655)

(476)(476)

(522)(522)

(222)(222)

(242)(242)

(651)(651)

(503)(503)

(656)(656)

(267)(267)

(88)(88)

(195)(195)

(456)(456)

(180)(180)

(600)(600)

(610)(610)

(654)(654)

(526)(526)

(593)(593)

(532)(532)

(103)(103)

(176)(176)

(653)(653)

(286)(286)

(650)(650)

(232)(232)

(299)(299)

(50)(50)

(622)(622)

(369)(369)

o. o. 

(485)(485)

(346)(346)

(465)(465)

(133)(133)

(441)(441)

In this result, the term 
m V

2

2
 does not depend on the coordinates r'  or velocity v'  and is a function of 

time t only. As such, it can be omitted from the Lagrangian
subs Norm V_ t 2 = 0, (648)

L' =
m v'

2

2
m v' V U r'

The term m v' V  can be rewritten as a total derivative plus a term involving the acceleration W = V
.
 of 

the frame K'. Starting from the product
r '_ t V_ t

r' V
%diff = diff (650), t

t
r' V = r'

.
V r' V

.

subs diff r '_ t , t = v '_ t , diff V_ t , t  = W_ t , (651)

t
r' V = v' V r' W

isolate (652), v'_ t V_ t

v' V =
t

r' V r' W

Introducing this into the Lagrangian L'
subs (653), (649)

L' =
m v'

2

2
m 

t
r' V r' W U r'

We get the expected result by discarding the total derivative 
d
dt

r' V

eval (654), %diff = 0

L' =
m v'

2

2
m r' W U r'

_______________________________________

b) The equations of motion can be computed from 
d
dt

L
q
.
i

=
L
qi

%diff %diff (655), v '_ t , t  %diff (655), r '_ t

t v'
L' =

m v'
2

2
m r' W U r'

r'
L' =

m v'
2

2
m r' W

U r'

value (656)



(82)(82)

(657)(657)

(339)(339)

(97)(97)

(548)(548)

(376)(376)

(513)(513)

(27)(27)

(290)(290)

(444)(444)

(629)(629)

(413)(413)

(111)(111)

(205)(205)

(476)(476)

(522)(522)

(222)(222)

(242)(242)

(503)(503)

(267)(267)

(88)(88)

(195)(195)

(456)(456)

(180)(180)

(600)(600)

(610)(610)

(526)(526)

(593)(593)

(532)(532)

(103)(103)

(176)(176)

(286)(286)

(232)(232)

(299)(299)

(50)(50)

(622)(622)

(658)(658)

(369)(369)

o. o. 

(485)(485)

(346)(346)

(465)(465)

(133)(133)

(441)(441)

0 = m v'
.

m W D U r'

where the last term D U r'  can be interpreted as the Gradient in the K' system.
 

Coriolis force and centripetal force

Problem
Consider a second non-inertial frame of reference J whose origin coincides with that of K', but which 
rotates relative to K' with variable angular velocity t . Denote the position vector and velocity in the
non-inertial frame J as r  and v , 
a) Show that the Lagrangian L in the non-inertial frame J is given by

L =
1
2

 m v 2 m v r
1
2

 m r
2

m W r U

b) Show that the Lagrange equation derived from this Lagrangian in the frame J  is

m v
.

= U m W m r
.

2 m v m r
where 2 m v  is the Coriolis force and m r  is the centrifugal force.

Solution

restart;
with Physics:-Vectors :

a) The starting point is the Lagrangian in the frame K0 . Denoting vectors and the Lagrangian in K0  with 
the suffix 0, L0  is given by
CompactDisplay r0_, v0_, r '_, v '_, r_, v_, V_, W_, Omega_ t

r 0 t  will now be displayed as r 0

v0 t  will now be displayed as v0

r' t  will now be displayed as r'

v' t  will now be displayed as v'

r t  will now be displayed as r

v t  will now be displayed as v

V t  will now be displayed as V

W t  will now be displayed as W

t  will now be displayed as 

L0 =
1
2

m v0_ t 2 U r0_ t



(82)(82)

(657)(657)

(339)(339)

(97)(97)

(548)(548)

(376)(376)

(665)(665)

(667)(667)

(664)(664)

(513)(513)

(27)(27)

(290)(290)

(666)(666)

(444)(444)

(629)(629)

(413)(413)

(111)(111)

(205)(205)

(661)(661)

(476)(476)

(659)(659)

(522)(522)

(222)(222)

(242)(242)

(503)(503)

(662)(662)

(267)(267)

(88)(88)

(195)(195)

(663)(663)

(456)(456)

(180)(180)

(600)(600)

(610)(610)

(526)(526)

(593)(593)

(532)(532)

(103)(103)

(176)(176)

(286)(286)

(660)(660)

(232)(232)

(299)(299)

(50)(50)

(622)(622)

(369)(369)

o. o. 

(485)(485)

(346)(346)

(465)(465)

(133)(133)

(441)(441)

L0 =
m v0

2

2
U r 0

The velocities of the particle in the frames K0  and K' are related by
v0_ t = v '_ t   V_ t

v0 = v' V

where V is the translational velocity of K' viewed from K0 . Inserting this relation (660) into L0  gives L ' , 
the result of the previous problem
(655) 

L' =
m v'

2

2
m r' W U r'

In turn, the velocities v'  and v  in the frames K' and J are related by
v '_ t  = v_ t   Omega_ t  r_ t ;

v' = v r

where  is the angular velocity of the frame J viewed from K'. Also, since K' and J have the same origin,
r' = r  and the Lagrangian L  in J  is
subs (662), r '_ = r_, L '= L, (661)

L =
m v r

2

2
m r W U r

expand (663)

L =
m v 2

2
m v r

m 
2
 r 2

2
m r

2

2
m r W U r

Two of these terms can be regrouped as r
2

Omega_ t  r_ t 2

r
2

expand (665)  = (665)
2
 r 2 r

2
= r

2

simplify (664), (666)

L =
m v 2

2
m v r m r W

m r
2

2
U r

which is the expected result.
_______________________________________

b) To compute Lagrange's equation in vectorial form, one can use the standard formula as in the previous 
problem

%diff %diff (667), v_ t , t  %diff (667), r_ t



(82)(82)

(657)(657)

(339)(339)

(97)(97)

(548)(548)

(376)(376)

(513)(513)

(27)(27)

(290)(290)

(444)(444)

(629)(629)

(413)(413)

(111)(111)

(205)(205)

(670)(670)

(476)(476)

(659)(659)

(522)(522)

(222)(222)

(242)(242)

(503)(503)

(267)(267)

(88)(88)

(195)(195)

(456)(456)

(180)(180)

(600)(600)

(610)(610)

(669)(669)

(526)(526)

(671)(671)

(593)(593)

(532)(532)

(103)(103)

(176)(176)

(286)(286)

(232)(232)

(299)(299)

(50)(50)

(622)(622)

(369)(369)

o. o. 

(668)(668)

(485)(485)

(346)(346)

(465)(465)

(133)(133)

(441)(441)

t v
L =

m v 2

2
m v r m r W

m r
2

2
U r

r

L =
m v 2

2
m v r m r W

m r
2

2
U r

Evaluate these derivatives and replace r
.

= v  
subs diff r_ t , t  = v_ t , value (668)

0 = m v
.

m 
.

r v m v m W m r D U r

Isolating m v
.
  and collecting vector products we get the expected result

isolate (669), m diff v_ t , t

m v
.

= m 
.

r v m v m W m r D U r
collect (670), `&x`

m v
.

= m r m 
.

r 2 m v m W D U r
 

Part II (forthcoming)

The Hamiltonian and equations of motion; Poisson brackets

Canonical transformations

The Hamilton-Jacobi equation
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