
Communications in Information Science and Management Engineering                                               CISME                                 

CISME Vol.1 No.7 2011 PP.30-35 www.jcisme.org ○C World Academic Publishing 

 
- 30 - 

 

Constructing Minimal Triangular Mesh Based on 

Discrete Mean Curvature 
Yu Liu1, 2, GuoJin Wang1, 2,* 

1 Institute of Computer Images and Graphics, Zhejiang University, Hangzhou 310027, China 

2State Key Laboratory of CAD&CG, Zhejiang University, Hangzhou 310027, China 

*wanggj@zju.edu.cn 

 
Abstract-In this paper, a so-called Plateau-Mesh problem is 
proposed, that is, to find a triangular mesh with the boundary 
formed by a given spacial closed polygon, whose area is minimum 
among all triangular meshes with the same boundary. To solve 
this problem, the former work by minimizing a function 
describing the mesh area directly, cannot obtain the global 
minimum of the function, only obtain its local minimum. In order 
to overcome this shortcoming, a new method to minimize the 
objective function which is measured by discrete mean curvatures 
is presented. As a base of the algorithm, the partial derivatives of 
discrete mean curvatures of the triangular mesh are evaluated. 
Numerical examples and error analysis are also given and the 
results show that our algorithm is correct and effective. 

Keywords-Plateau-Mesh problem; triangular mesh; least 
squares; discrete mean curvature; minimal surface 

I. INTRODUCTION 

A minimal surface, whose area is the minimum and 
geometric structure is steady, is the one for which mean 
curvatures everywhere vanish and Gauss curvatures are 
constant and negative everywhere except in finite points. A lot 
of people made researches on it in the past. Lagrange [1] gave 
the quasi-linear second-order elliptic partial differential 
equations for minimal surfaces, and Joseph Plateau found that 
the soap membrane made on the frame would become a 
minimal surface. Rado [2] and Douglas [3] obtained the solution 
for a disc minimal surface by the conformal mapping and the 
variational method respectively. Arnal, Lluch and Monterde [4] 
approximated minimal surfaces using Bézier triangular 
surfaces. However, all of these algorithms above cannot be 
applied directly to the engineering. The reason is that the 
solution of the minimal surface with a given boundary is just 
needed urgently. Such a class of minimal surface with the 
perfect shape and stress form is the most reasonable ideal 
initial state of the membrane structure, which is widely used in 
modern high-rise buildings, e.g., in the cable-membrane 
structure system of gymnasiums and airport lounges. In 
addition, this class of minimal surface plays an important role 
in the fuselage construction, hull manufacturing, molecular 
chemistry, crystallography and so on. 

In 1993, Pinkall and Polthier [5] solved the problem of 
constructing minimal surfaces with the boundary of continuous 
or piecewise continuous curves. During 2003 and 2004, 
Monterde [6], [7] formally proposed the Plateau-Bézier problem: 
finding the Bézier surface whose area is the smallest in all the 

Bézier surfaces with the same boundary of a given spacial 
closed Bézier curve, i.e., the mean curvature everywhere on the 
obtained Bézier surface always vanishes. And Montverde’s 
work took a key step towards the engineering applications for 
minimal surfaces. 

In the last decade, some scholars devoted themselves to the 
discrete minimal surfaces researches. Dziuk and Hutchinson [8] 

approximated minimal surfaces by optimizing their discrete 
finite elements; Polthier and Rossman [9] gave some explicit 
expressions of the discrete catenoids and the discrete right 
helicoids using the variational method. But none of their 
methods above yet belong to the discrete Plateau method or 
Plateau-Mesh method. 

In 2010 and 2011, Pan and Xu [17], [18] gave the solutions to 
the problem of the discrete minimal surface with the given 
boundary using different subdivision methods, which are very 
similar with discrete Plateau problem. 

Plateau-Mesh problem can be defined as follows: find a 
triangular mesh whose geometric area is the smallest in all 
triangular meshes with the same boundary formed by a given 
spacial closed polygon. In 2008, Chen, et al [10] solved such a 
problem by optimizing the initial triangular mesh area. 
However, this algorithm obtained only the local minimum 
usually, but not necessarily the global minimum. To improve 
the above non-consummate method, we propose an algorithm 
of optimizing the discrete mean curvatures function to solve 
the Plateau-Mesh problem. 

II. ALGORITHM 

A. Algorithm Overview 

Our algorithm for the Plateau-Mesh problem can be 
described by the following sentences briefly: firstly, picking up 
randomly the initial uncertain n points from the set of candidate 
points according to the method which will be shown in detail in 
the second paragraph; secondly, carrying out the Delauny 
triangulation with the boundary of a given spacial closed 
polygon L  for them; thirdly, taking the discrete mean 
curvatures on the mesh got by the first step as the objective 
function and solve it using the least squares algorithm to get a 
new triangular mesh; then repeating the last two steps until that 
any of iterative conditions isn’t satisfied. The discrete mean 
curvature on each vertex of the mesh can be defined by many 
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ways, e.g., by the weighted edge by Taubin [11], by the 
discretization of LBO (Laplace-Beltrami Operator) operators 
by Desbrun et al [12], by bounding boxes by Cohen-Steiner et 

al [13]. Here we employ the last definition by Cohen-Steiner 
et al [13]. 

The method to select the initial set of candidate points can 
be introduced as follows. Set vertices of the spacial closed 

polygon L  as  , 1, ,i i m V  and the candidate points set 

as  '
, 1, , ,

j
j k k n V , respectively. The first candidate 

point is picked up by '

1

1

1 m

i

im 

 V V  and the remaining 

candidate points are selected using the triangular barycentric 

formulas, i.e.,  ' '

1 1

1
, 2,3, , ;

3
j j j j m    V V V V  

   ' ' ' ' '

1 1 2 2 2 1 1 2

1 1
, ,

3 3
m m      V V V V V V V V

 

 ' ' '

3 2 1 2

1
, ,

3
m    V V V V

 
until .k n  The Delaunay 

triangulation is carried out using the random incremental 
method [14]. Denote the discrete mean curvature for each vertex 

i
V  on the mesh by  H

i
V

 
and the objective function will be 

   
2

1

m n

i

HF





m+1 m+n i

V , ,V V . Fig. 1 describes simply the 

algorithm process. 

 
 

 
 

 
 

Fig. 1 The algorithm process for the Plateau-Mesh problem 

B. The Formula of Discrete Mean Curvatures 

Discrete mean curvatures on a mesh are defined by 
Cohen-Steiner et al [13] as follows, 

     
 1

1
, .1, ,

i

i i

N

H H length B
B

i m n


     
e V

V e e

Where B  represents the geometric area of the region B  

that means the bound of the region in which the mean 

curvatures are measured;   e  represents the signed angle 

between the normal vectors of two triangles sharing the edge 
e (as shown in Fig. 4) and is positive for a convex crease or 

negative for a concave one;  1 iN V  is the 1-neighborhood of 

the vertex iV ;  length Be  is the length of the portion of 

the edge e  within the region B ; B  can be chosen in many 

ways but here we choose it as the area of mass center of 

 1 iN V , i.e., 
 1

1

3
f

f N

B A


 
iV

, where fA  represents the 

geometric area of the triangle f , as shown in Fig. 2. 

 

 
Fig. 2 Areas of a vertex and triangle 

 
Then the objective function can be written by 

   
2

1

1

1
, , ,

2

m n

i m m+n

i

HF




  
+

x x = V V .      (1) 

Minimal surfaces are the surfaces with the vanishing mean 
curvatures, so the discrete minimal mesh surfaces are the mesh 
surfaces with vanishing discrete mean curvatures. In the 
algorithm process partial derivatives of the discrete mean 

curvatures on vertices , 1, ,i i m m n  V  are needed 

to be evaluated. 

C.  Partial Derivatives of Discrete Mean Curvatures 

Partial derivatives of discrete mean curvatures iH   on 

vertices , 1, ,j j m m n  V  are given as follows [15], 

   
 
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.
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
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     

          










i

i

e V

e V

e e e e
V V V

e e
V

   

 (2) 

Then we evaluate three types of partial derivatives in the 
formula (2), respectively. 

1) Partial Derivative of the Geometric Area B :  The 

formula is given by [15] 

iVA         

iV         
iV         

jV         
ijkfA

        

kV         

Iteration 

 Min F m+1 m+nV , ,V

Delaunay Triangulation 

… …

…… 
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 1

1
.

3
f

f Nj j

B A


 


 


iVV V
 

As an example, the partial derivative of the triangle 

1 2 3VV V  ’s area on the vertex 1V  is evaluated by the following 

formula, 

    

    

123 12 23 13 13 23 12

1 12 13

12 13 23 23

12 13

1 1

2

1 1 1
,

2 2

A


       
 

       


-e e e e e e
V e e

e e e n e
e e

 

as shown in Fig. 3, where n  is the unit normal of the 

triangle 1 2 3VV V  and 23e  the opposite edge to the vertex 1V  

 
Fig. 3 Meanings of signs 

 

2) Partial Derivative of the Edge Length 12e :  The 

formula is given by [15] 

12 12 12 12

1 2

, ,
 

  
 

e e e e
V V

 

also as shown in Fig. 3, where 12e  is the unit vector in the 

direction of the edge vector 12e . 

3) Partial Derivative of the Angle   e :  The 

formula is given by 

      
 

 
 

1 41

1 2 2

3 1 2 2
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1

1

.

 
  
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 



    

 
 

sign
n e

e e n n
V n n n

n e
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n
  

(3) 

Where   sign  e  is defined as follows and the 

meanings of signs are shown in Fig. 4. 

 
Fig. 4 The signed angle between the normal vectors of two triangles incident to 
e  
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Here we give the proof of the formula (3). By evaluating 

the partial derivatives for 
3V  in both sides of the following 

equation,   1 2

1 2

1 2

cos


  


n n
e n n

n n
, we obtain 

     

 
 

1 2

3 1 2 3

1 2

1 22

31 2

1
sin

.

 
 
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 
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       (4) 

The partial derivative of the inner product of 1n  and 2n , 

which are the normal vectors of the two triangles, can be 
evaluated by 

      

        
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The partial derivative of the product of 1n  and 
2n , 

which are the lengths of the above two normal vectors, can be 
evaluated by 

   

   

   

1 2 341 324

3 3

1 41 324 2 24 341
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Substituting the following three equations, 

   1 2 2 14 1 24 1 2

3 3

,
 

     
 

n n = n e n e n n
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n e n e
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 and 
1 2

1 2

sin





n n

n n
 into Eq. 

(4), it’s easy to obtain the formula (3). 
D. The Least Squares Algorithm: Levenberg-Marquardt 

(LM) 

This section will introduce the least squares 
Levenberg-Marquardt (LM) [16] algorithm which is employed to 
minimize the objective function written as the formula (1). In 
fact, LM algorithm is an improvement of Gauss-Newton 
algorithm. 

The objective function (1) satisfies 

     
1

2
F 

T
x = f x f x , where    1 2, , , m nH H H  f x  is 

the vector function, so minimizing  F x  is equivalent to 

3 

1 2 
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minimizing  
2L

f x . Also the Jacobin matrix of the vector 

function  f x
 

is

 *

.i

j m n n

H



 
  
  

J
V

  

In the  1k th  iterative step, 1k+
x  is updated by the 

following formula, 

    1, .T T

k k k k k k- 
+

J J + I δ = J f x x x + δ  

 Where k  is the damping parameter, whose initial value 

is assigned to the 10-6 times of the largest principal diagonal 

element of the matrix T
J J  and the updating function is given 

by literature [14] or reviewed in detail in the following pseudo 
code (as shown in Fig. 5). The termination criterion of the 
iteration in LM algorithm can be given as 

   

 

3

1

max

1 , 1 ,

1 , .

k k k k k

k k

F F F F F

k k

 



 

 

     

   
 

Where   is assigned to 10-6 and  L   is defined by 

 
1

2

T T T TF  x J f J J    as shown in Fig. 5. 

III. Examples and Error Analysis 

This section will show some examples and give error 
analysis of our algorithm. The examples include three 
well-known types of minimal surfaces, i.e., Spiral surfaces, 
Saddle surfaces and Scherk surfaces, as well as the simulative 
membrane structure of the engineering. 

In the case of the three well-known types of minimal 
surfaces, with the spacial closed polygon L  given 
respectively by the three types of minimal surfaces 
approximately as the triangular mesh boundary, we solve the 
Plateau-Mesh problem by the algorithm and process error 
analysis for the final discrete solution compared with the 
corresponding continuous surface. In the first two examples six 
figures are given, where Fig.-s. 6(1) and 7(1) are the initial 
Delaunay triangular meshes; Fig.-s 6(2) and 7(2) are the 
corresponding final discrete solutions; Fig.-s 6(3) and 7(3) are 
corresponding comparisons evaluated by the Chen et al [10] `s 
algorithm; Fig.-s 6(4) and 7(4) are plotted by the corresponding 
error analysis from different perspectives, where large or small 
errors are denoted by dense or sparse sets of points. Histogram 
Fig. 8 is plotted by nine sets of the third type of minimal 
surfaces experimental data.  

In the case of the simulative membrane structure of the 
engineering, with the spacial closed polygon L  given by the 
steady points of the simulation membrane structure as the 
triangular mesh boundary, we solve the Plateau-Mesh problem 
and Fig. 9 is plotted according to the discrete solution, where 
Fig. 9(1) is the initial Delaunay triangular mesh and Fig. 9(2) 
the final discrete solution. 

A. Helicoid 
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Fig. 5 The pseudo code of the LM algorithm 

 

The surface equation    , cos , sin ,u v u v u v b v   r , 

where 1.9, 20b n  and the number of the vertices of the 

polygon L  is 28. The results are shown by Fig.-s 6(1), 6(2) 
and 6(4) and the comparison solved by the Chen et al [10] `s 
algorithm is shown in Fig. 6(3); our algorithm`s mean error is 
2.941e-003 and the Chen et al [10] `s is 4.110e-003, which are 
both evaluated by the following formula, 

   
 

tan 1 , 1;
:

tan , other.

y x z b y y
ERR

y x z b

   
 


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Fig. 6(1) Initial Delaunay triangular mesh based on the helicoids 

 

 
Fig. 6(2) Discrete solution by our algorithm 

 

 
Fig. 6(3) Discrete solution by the Chen et al [10] `s algorithm 

 

 
Fig. 6(4) Error analysis from different perspectives, large or small errors 

denoted by dense or sparse sets of points 

B. Catenoid 

The equation    , cos cosh , , sin coshu v b u v bv b u vr , 

where 2.05, 25b n   and the number of the vertices of 

the polygon L  is 24. The results are shown by Fig.-s 7(1), 7(2) 
and 7(4) and the comparison solved by the Chen et al [10] `s 
algorithm is shown in Fig. 7(3); our algorithm`s mean error is 
9.192e-004 and the Chen et al [10] `s is 1.412e-003, which are 
both evaluated by the following formula, 

2 2 2

2 2 2

cosh , 1,

:

cosh , other .

z b y b x z

ERR

z b y b x z

   


 
  


 

 

 
Fig. 7(1) Initial Delaunay triangular mesh based on the catenoids 

 

 
Fig. 7(2) Discrete solution by our algorithm 

 

 
Fig. 7(3) Discrete solution by the Chen et al [10] `s algorithm 

 

 
Fig. 7(3) Error analysis from different perspectives, large or small errors 

denoted by dense or sparse sets of points 

C. Scherk 

The surface equation     
1

ln cos cosz by bx
b

  ,  

where 0.4, 1, 4.9b   with different n  and different 

numbers of the vertices of the polygon L . Histogram Fig. 8 is 
plotted to show mean errors, in which the horizontal axis 
indicates serial numbers of examples and the vertical axis 
indicates mean errors whose formulas are defined by 

    

    

1/ ln cos cos , 1,
:

1/ ln cos cos , other.

z b by bx z
ERR

z b by bx z

   
 

 
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Fig. 8 Histogram of error analysis based on the scherks 

 
D. Application in Enginerring 

Simulative membrane structures of the engineering, 
where 4n   and the numbers of the vertices of the 

polygon L  is 9. The result is shown by Fig.-s 9(1) and 9(2) 
and the mean error of mean curvatures is 4.786e-004. 

 
Fig. 9(1) Initial Delaunay triangular mesh 

 

 
Fig. 9(2) discrete solution correspondingly 

IV. CONCLUSIONS 

For the triangular Plateau-Mesh problem, in 2008 Chen 
et al [10] optimized the initial triangular mesh geometric 
area to solve it, but their solution were not necessarily the 
global minimum; we optimize the mean curvatures defined 
by Cohen-Steiner et al [13] of the initial triangular mesh and 
our algorithm`s advantage is more obvious for relative 
sparse set of points. The algorithm is proved to be correct 
and effective by numerical examples. But there are still 
some weaknesses, e.g., error accuracy needs to be improved; 
the initial uncertain points would influence the solution. In 
the future the relationship in theory between the two 
algorithms: one based on the geometric area and the other 
based on discrete curvatures, need to be researched further. 
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