Exploration of prime producing trinomial f(n)=n"2+n+41
by Matthew C. Anderson

Abstract

In this study, of the trinomial, f(n)=n"2+n+41, assume n is a positive integer. | used Maple,
computer algebra system, to calculate whether f(n) is a prime number, or a composite
number, for n less than 1800. Observe many parabolas in the data of the graph. It turns out
that the curve fitis exact.

In number theory, assume nis a positive integer. Let
f(n)=n2+n+41. (expression 1)

It was shown by Legendre, in 1798 that if 0 < n < 40 then f(n) is a prime number. Certain
patterns become evident when considering points (a,n) where

f(n) =0 modulo a. (expression 2)

The collection of all such points, up to the limit 1800, we are calling a “graph of discrete
divisors”. This graph has been, analytically, curve fit, exactly, with parabolas. The

parabolas are described by closed form expressions. The parabolas are indexed (r,c) by
pairs of relatively prime positive integers. The expressions for the middle parabolas are

p(r,c) = (C*X = r*y)? —=x*(c*x — r*y) —x + 41*r? (expression 3)

The restrictions on p(r,c) are that O<r<c and gcd(r,c) = 1, where the greatest common divisor
of two arguments is written gcd(r,c). And all four of r, ¢, X, and y are integers.

When we take the derivative of p(r,c) with respect to x and set this expression equal to zero,
we obtain

x=(163*m?)/4 (expression 4)
where mis the x minimum of a given parabola

Each such pair (r,c) yields (again determined by curve fit and by observation of “graph of
discrete divisors”.) And using Maple, computer algebra system for the coefficients of the
parabolas, and there is one parabola per pair (r,c). Calculations of parametric integer
polynomials a*z2 + b*z + ¢, where the coefficients (a, b, and c) are determined for each
parabola, which pass through data points in this “graph of discrete divisors”. The first few
(r,c) pairs are (2,1); (3,2); (3,1); (4,3); (4,1) and (5,4). Again, r and c must be relatively prime



numbers. Further, the quartic f(a*z? + b*z + c) will factor algebraically over the integers into
two quadratic expressions. We call this our “parabola conjecture”. Certain structure of the
“graph of discrete divisors” are due to elementary relationships between pairs of co-prime
integers.

We conjecture that all composite values of f(n) arise by substituting integer values of z into
f(a*z2 + b*z + ¢), where this quartic polynomial factors algebraically over Z for a*z? + b*z + c,
which is a quadratic polynomial determined by a pair of relatively prime integers (r,c). We
are confident of this conjecture because of numerical evidence and the structure of the
“graph of discrete divisors” produced by some computer code in our computer algebra
system (Maple). We call this our “no stray points conjecture” because all the points in the
graph appear to lie on a parabola.

We further conjecture that the minimum x-values for parabolas corresponding to (r,c) are
given by expression 4. The vertical lines are given by x=163*m?/4 where m=2, 3, 4, ... The
numerical evidence seems to support this. This is called our “parabolas line up
conjecture”.

Theorem 1 - Consider f(n) with n a positive integer. Then f(n) never has an integer factor
less than 41.

We prove Theorem 1 with a modular construction. We make a residue table of f(y) modulo
X, with all the prime number divisors less than 41. A form of the fundamental theorem of
arithmetic states that any integer greater than one is either a prime number, or can be
written as a unique product of prime numbers (ignoring the order of numbers). So if our
residue table never shows a prime factor less than 41, then by extension, f(n) never has a
prime factor less than 41.

For example, to determine that f(n) is never divisible by 2, note the first column of the
residue table. If nis even, then f(n) is odd. Similarly, if nis odd, then f(n) is also odd. In
either case, f(n) does not have factorization by 2. Since all integers are either even or odd,
f(n) is never divisible by 2, when n is a positive integer.

Also, for divisibility by 3, there are 3 cases to check. Theyaren=0, 1, and 2 modulo 3. f(0)
modulo 3is 2. f(1) modulo 3is 1 and f(2) modulo 3is 2. Since none of these results is 0, we
have that f(n) is never divisible by 3. This is the second column of the residue table.

The number 0 is first found in the residue table for the cases f(0) modulo 41 and f(40)
modulo 41. We can see that 402 + 40 + 41 = 412, This means that if n is congruent to 0 mod
41 then f(n) will be divisible by 41. What’s more is that these are the only two cases for
divisibility by 41. Similarly, if nis congruent to 40 modulo 41 then f(n) will also be divisible
by 41.



After the residue table, we observe a curve fit to our “graph of discrete divisors”, which has
points when f(y) modulo x is divisible by x. This is a perfect curve fit. The points (x,y) can be
seen in a data table, and on the graph.

Thus, we have shown that f(n) never has an integer factor less than 41.
Theorem 2
Since f(a) = a®2 + a + 41, we want to show that f(a) = f(-a-1).

Proof of theorem 2

Because q(a) = a*(a+1) + 41,

Now q(-a-1) = (-a-1)*(-a-1+1) + 41.
So, q(-a-1) = (-a-1)*(-a) + 41,

And f(-a-1) =f(a).

End of proof of theorem 2.

Corollary 1
Further, if f(b) modulo ¢ =0 then g(c-b-1) moduloc =0

We see that it is amazing that the data points all fall within an exact curve fit. All the
parabolas have integer coefficients.

End first section



This residue table shows divisibility restrictions on f(n).
note thatthe number 0 does not appearin most columns.

Residue Table
2 3 5 7 11 13 17 19 23 29 31 37 41 43
0l1 2 1 & 8 2 7 18 12 10 0 4
11 1 3 1 10 4 9 20 14 12 2
2 2 2 5 3 8 13 9 1 18 16 10 6
3 3 4 5 1 2 15 7 24 22 16 12 10
4 1 5 6 9 10 4 15 3 30 24 20 18
5 1 5 6 3 14 2 13 9 34 30 28
6 6 6 5 15 7 14 25 21 9 1 40
7 5 6 12 2 5 10 4 23 15 11
8 3 9 11 18 21 26 20 2 31 27
9 10 1 12 17 16 15 7 20 8 2
10 8 8 15 18 13 6 27 3 28 22
11 4 3 2 12 28 18 25 9 1
12 2 10 7 13 23 11 12 33 25
13 2 14 1 20 6 1 18 8
14 13 4 21 19 3 29 5 136
15 9 15 5 20 2 22 35 23
16 7 14 23 3 17 26 12
17 2 28 6 14 19 3
18 15 6 11 13 14 39
19 7 15 18 14 11 34
20 1 26 27 17 10 31
21 20 10 7 22 11 130
22 18 25 20 29 14 31
23 13 4 1 19 34
24 3 21 12 26 39
25 26 9 25 35 3
26 18 30 3 5 12
27 14 22 20 18 23
28 12 16 2 33 136
29 12 23 9 8
30 10 9 28 25
31 34 8 1
32 24 31 22
33 16 15 2
34 10 1 27
35 30 11
36 20 40
37 12 28
38 6 18
38 2 10
40 0
41
42 41




Note that h(y) = f(y) = y>+y+41.
Also, this “bifurcation graph” is also called a graph of discrete divisors.
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Bifurcation Graph
These are pairs of numbers (x,y) such that h(y) mod x = 0.

And hly) =y’ +y + 41.

Similar graph, zoomed out some
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Here is a zoomed out iteration of the same graph as the previous page.

There seems to b an apparent regular structure in this graph of divisibility.

The points give themselves to an exact curve fit of parabolas.

Note that all the points in this interesting graph fit on a given parabola.

No stray points



The points give themselves to an exact curve fit of parabolas.

The general form of these parabolas is -

p(r,c) = ’x* = 2c*r*x*y +r'y’ — (c*r +1)*x + r'y +41r°. (Equation 1).

p is for parabola, r is for row index, c is for column index, x is the horizontal axis and y is the vertical axis.
This does not include the top and bottom parabolas.

There are also 3 restrictions.

1<r

O<c<r

Ged(r,c) = 1.

All the parabolas can be described exactly and algebraically.

Excuse the white space

The x minimum of p(r,c) is
Pmin =(163*r"2)/4. (expression 2)
This can be found with the Mape Commmand extrema.

To wit—

;> # pis for parabola
> plre] = ot —re2:xy+ r2~y2— (rre+1) x4y +41 o

Py o= X =2 rexy + I'Z_)'Z —(cr+1)x+ rz)' +41 /7 (1)

> e2 = extremal(x, p[r,c] =0, {x,v});
e2:= —]33 2 )

That is good to know.
Maple is a useful tool.



Here is some Maple code to show the exact curve fit for the graph of divisors.

> # Maple code
> x[bottom] := zA2+z+41; y[bottom] := z;
> p2 := plot([x[bottom], y[bottom], z=0 .. 20]);
> with(plots);
>x[1, 1, top] := z"2+z+41; y[top] := 2/2+40;
> p3 := plot([x[top], y[top], z=0 .. 20]);
>
>y[2, 1] = 2%z 2+z+81; x[2, 1] := 4*2°2+163;
> pd := plot([x[2, 1], y[2, 1],z=-10 .. 10]);
>
>y[3, 1] 1= 3%2/242%2+122; x[3, 1] := 9%2/2+3*2+367;
>p5 = plot([x[3, 1], y[3, 1], z=-4 .. 3]);
>
>y[3, 2] = 6%z 2+2+244; x[3, 2] := 9%z 2+3%2+367;
> p6 := plot([x[3, 2], y[3, 2], z=-4 .. 3]);
>
> d1 := display([p2, p3, p4, p5, p6])
> # code for graph of divisors
> xv := Vector[row](89); yv := Vector[row](89); counter := 1;
> for a from 2 to 600 do

for b from 0 to a-1 do

if ‘mod’(b”*2+b+41, a) = 0 then
xv[counter] := a; yv[counter] := b; counter := counter+1
end if
end do
end do;

> counter;
> d2 := plot(xv, yv, style = point, symbol = asterisk);
> display(d1, d2)
> i# This produces a graph.

This curve fit took some effort. Some manual, some computer aided



Graph of Divisors with parabolas that exactly fit the points
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Graph of divisibility
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Notice the vertical lines are tangent to the parabolas.

Glad you are still reading



Undiscovered Expressions

So far, we want to determine when h(n) = n? + n + 41 is a prime number. We produce a dataset that
satisfies the congruency h(y) = 0 mod x. In other words, we find ordered pairs (x,y) such that x divides
h(y). The graph of all pairs (x,y) seems to have obvious regularity and patterns. We are able to tabulate
coefficients of parabolas that exactly fit the data. Here are the first few parabolas :

P bottomx (z) =22 +z+41
P bottomy (z) =z

Ptopx(z)=2"—z+41
Ptopy(z)=2°+40

P2,1x(z) =4*2 + 163
P2ly(z)=2*7+2+81

P3,2x(z)=4*2" +163
P3,2y(z) =6*2° +z +244

P31x(z)=2+z+41
P3,1y(z)=3*2+2%2+122

A computer tool can show that h( P 2,1 x(z)) =P 2,1 y(z) * (2" + z +41). (equation *)

The Maple command subs() can substitute one expression into another. Also the Maple command
factor() can factor quartic polynomials.

The important part of equation * is that the right hand side is the product of two integers, both greater
than one. This proves that h( P 2,1(z)) is a composite number. In other words, if you put a positive
integer of the form 4*7% +163 as input to h(n), then you will get a composite number as output.

We have the general parabola
Pcrx(z)and P cry(z).

| was unable to determine these expressions. It may be impossible and it is related to the distribution of
prime numbers.

My naming scheme for the parabolas requires c and r to be integers and
0>r>c and ged(r,c)=1

Where gcd is the Greatest Common Divisor of two integers.

Thatis a lot to read.



Appendix 1 - Maple Code for graph of discrete divisors

x = Vector(55) :
y = Vector(55) :
counter = 1:
fora from?2 to 378 do
forb fromQOtoa — 1 do
ifmod(b® + b + 41,a) =0
then x[counter ] = a :y[counter | == b :counter = counter + 1,
end if;
end do:
end do:

The number 378 was chosen by trial and error to completely fill the vector of length 55. The
number 55 was chosen so that we can easily identify 5 parabolas from the data points.

This code creates a data set and stores it in two vectors.



> # list of pairs (x,y) such rhafyz +yv+4]l modx = 0.
> fora from 1 to 40 do
x[a],y[a]
end do;
41,0
41, 40
43,1
43, 41
47,2
47, 44
53,3
53,49
61, 4
61, 56
71,5
71,65
83, 6
83,76
97,7
97, 89
113, 8
113, 104
131, 9
131, 121
151,10
151, 140
163, 81
167, 82
167, 84

Itis interesting. There are patterns, man.



L > h:= A +n+4l:
> f=proc(y)
description "factors the substitution of the eypression into n*2+n + 41"
ﬁu:tor(y: +y+41 );
ead proc:
f=prociy) (1)
description "factors the substitution of the eypression into n*24+n + 41";

factor{y"2 +y-+41)

| ead proc
[ >
_> = Small equation coeffieients doublecheck
>
> =The question I am attempting to answer in this project is — what integer values of n cause

| &in) to be a composite number, and by extention, when is h(n) prime.

> =ris for row and ¢ is for column. So y[r,c] is a composition of functions h( y[r,c]).

> =when y[r,c] is carefilly chosen, it makes y[r,c] algebraically. This means that y[r,c] is the

= product of two integers, neither of which is 1 or —1, and thus y|r, c] is composite

> =1Iam pretty sure that any n below a threshold lies on one of the lines described by the
expressions below.

RRRRRRRRRRRPRRRRRRRRRRRRRRORRRRRY

>
=>
> ¥ll]l==z:
xil 1] =f(%);
xU:=:2+:+41 )
[ > yi1.2] =2 +40:
xi1,2] = f(%);
x| 5= (:2+z+4l) (:'—:+41) 3)
IS 51211 =27 +2+381:
x[2,1] = f(%); :
%= (42+163) (F+z+41) (@)
> ¥3,11=32+2z+122:
x[3,1] = f(%);
%= (2 +z+41) (97 432+367) ®)
> y[3,2] =62 +z+244:
x[3,2] = f(%);
X3 .= (47 +163) (97 +32+367) (6)
> y[4,1]1:=42+32+163:
x[(4,1] = [(%);
v =(1A248+4432) (2 L =1 41) n

This represents efforts.



But enough about
f(n) = n?+n+41.

Let us look at a new trinomial

n%+n+17.

Analysis of the trinomial f(n) = n” + n + 17.

Abstract — Assuming that n is an non-negative integer, we find a pattern of when f(n) =n*+n+17isa
composite number. We assign n as n = A*x’+B*x+C. Where A, B, and C are determined by numerical
evidence. The f(n) factors algebraically, and f(n) is a composite number.

We use the Maple program to calculate the values of ‘n” where f(n) is a composite number. Then we
graph these results. The graph shows some structure for the composite cases. See Maple code.

> #6—29-2023

>
x = Vector[row](49) :
y = Vector[row](49) :
counter = 1:
fora from2 to 200 do
forb from0toa — 1do
ifmod(b% + b + 17,a) =0

then x[counter ] := a :y[counter | == b : counter = counter + 1;

end if;
end do:
end do:

> counter

> plot(x,y, style = point, symbol = asterisk, color = black )

Okay
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# this is a graph of 49 data points of y 2 +y+ 17modx = 0.

# It can be curve fit with parabolas.

# This graph shows 5 parabolas

# The names of the parabolas are p 1op> Pottoms P2, 1 P3,2 5 llldp3 1

>
Hope you find this page interesting.

Good fun
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Have a good day.



