578 A. Ahmed

Inner peristaltic wall

i

§1118X

Fig. 1 Geometry of the peristaltic bifurcated channel
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is /g = — where x7, x3, and x4 lie on the x-axis of the artery as shown in Fig. 1, which depends on
the half of the bifurcation angle « and are written as

The radius of the lateral junction curvatures is ro = — 1, and the radius of the flow divider curvatures
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where q; € [0.1, 0.5]. These values of q; show compatibility of the geometry of the bifurcated artery where
H\(%, 1), Hy(X, 1) are the expressions for the outward and inward propagating walls of the channel, ¥ is
the axial direction coordinate, ¢ represents time, a is the half width of the bifurcated channel, b denotes
the amplitude of the walls, X is the wavelength, and c is the wave velocity, respectively. By considering the
bifurcated channel flow to which the inner and outer walls exhibit the sinusoidal wave formation, the values
of temperature (7') and nanoparticles’ volume fraction (F) at the symmetry line (y = 0) are taken as Ty, Fo
and at the bifurcated channel wall (y = h) as Ty, F1, respectively. The nanoparticles’ concentration is thin and
chooses an appropriate reference pressure.

The governing equations for mass conservation, momentum, thermal energy, and nanoparticles’ volume
fraction are:
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where ¥, it, U, 4, D, 8,0, Pp»> P70,Ps (pc) s (pC) . K, T, F, D, and Dt denote transverse coordinate, axial
velocity, transverse velocity, pressure, acceleration because of gravity, fluid density, nanoparticles’ mass den-
sity, nanofluid density at reference temperature (7p), volumetric expansion coelficient of fluid, heat capacity of
fluid, effective heat capacity of nanoparticles, thermal conductivity, temperature, nanoparticle volume fraction,
Brownian diffusion coefficient, and thermophoresis ditfusion coefficient.

We introduce the non-dimensional parameters:
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where x is the dimensionless coordinate in the axial direction, y is the dimensionless coordinate in the transverse
direction, p is dimensionless pressure, # and v are dimensionless components of velocity, ¢ is dimensionless
time, k1 and hy are transverse oscillations of the inner and outer walls, § is the wave the number, ¢ is the
amplitude ratio, v is the kinematic viscosity of the nanofluid, 6 is dimensionless temperature, ¢ is nanoparticles’
dimensionless volume fraction, G, is the thermal Grashof number, G,,. is the basic-density Grashof number,
R, is the Reynolds number, P, is Prandtl number, N is the thermophoresis parameter, Ny, is the Brownian
movement parameter, and & the is thermal conductivity of the nanofluid.

Under the approximation of long wavelength (i.e., k >> a), we have § — 0 and in addition the Reynolds
number R, — 0. While for § — 0 the wave effects vanishes, R, — 0 restrains the convective inertial forces
to be negligibly small in relation to the viscous forces. In consideration of these approximations. Eqs. (5)— (9)
take the form:
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The admissible boundary conditions will be:
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The effects of bifurcation of the artery can be transmitted into the momentum equations (11) to (15) by

reworking on the axial and radial coordinate transformations [1]:

_ V=R
E=ux,n= R
where R = R — R».
Using Eq. (17), it is observed that
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and the boundary conditions (16) are
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3 Solutions development
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We use Cauchy Euler’s method to solve the nonhomogeneous ordinary linear differential equation of dependent
variables in Eq. (18) which yield velocity profiles for both parent and daughter artery:
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where the volumetric flow rate of the nanofluid is featured as:
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1
0, = ZR/ﬁdy, (25)
0
1
Q4 = Rfﬁdy. (26)
0

The conversion between a wave framework (X, ¥) progressing with velocity ¢ and the fixed framework ¥,
y is presented as [2,3]:

XZ)?—CZT, ?2)7, U:ﬂ—c, f/:i},

where (U , \7) and (u,v) are the velocity arguments in the oscillatory and fixed framework, respectively. The
volumetric flow rate in the waving frame may be worked out with the following expressions:

1
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0
and integration leads to:
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where g = fol udy.
Volumetric flow rate averaging over one period of time yields:
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Using Eqgs. (31) and (32), it is observed that:
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The resistance to the blood flow is described as

The pressure across one wavelength is

A=—. (36)
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Fig. 2 Velocity profiles (u) for different values of the Hartmann number (M) and bifurcation angle («) (shown by panels a and
b, respectively)
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Fig. 3 Velocity profiles (u) for different values of Brownian motion parameter (Ny,), thermophoretic parameter (N,) (shown by
panels a and b, respectively)

4 Graphical results and discussion

This study becomes interested or engaged in order to determine the quantitative effects of magnetohydrody-
namics and nanoparticles on peristaltic flow through a bifurcated channel in the present section. An illustration
with graphical results is presented in Figs. 2, 3,4, 5, 6, 7, 8, 9, 10, and 11 to demonstrate the influence of
the various physical parameters on the blood flow features by considering that d = 4,a=%¢,ir; = 0.45,q =

0.5,& =12,§, =20, Q =0.1, %g = 1, € = 0.2. The results are achieved by using Mathematica notebook.

Figures 2, 3, and 4 give a visible impression of different parameters on the velocity profiles in the bifurcated
artery. In these Figures, the axial velocity is generally negative for both parent channel and daughter artery,
which means flow reversal or back flow is taking place. The axial velocity is maximum at the center (§ = 0)
in the parent artery and parabolically symmetric in the daughter artery that maximizes at & = 0.5. Figure 2a
shows the Hartmann number depending on the velocity of the fluid. It is seen that with the increase in Hartmann
number (M) the magnitude of the velocity profile decreases in both parent and daughter arterics, whereas the
magnitude of velocity curves begins to increase in the parent artery as compared to the velocity in the daughter
artery. The Hartmann number supports the backflow in the bifurcated artery. This is physically described as
the magnetic field applications on electrically conducting nanofluid producing a resistive force in order to slow
the flow in which viscous forces influence the electrical conductivity. Figure 2b shows the changes occurring
in the velocity profile with the change in the bifurcated angles. It is disclosed that with the increase in the
bifurcation angle («) the velocity exhibits no change in the parent artery while its magnitude decreases with
the increase in the bifurcation angle.

Figure 3 shows the variation velocity profiles (u) for different values of the Brownian motion parameter
(Np) and thermophoresis parameter (N;). Figure 3a indicates that with the increase in the Brownian motion
parameter (N;) there has been a decrease in the magnitude of the velocity profile which is observed in both
parent and daughter artery. Physically this means that the nanoparticle volume fraction is responsible to make
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Fig. 8 Pressure gradient (%?) versus axial direction (£) with variation of magnetic field (M) and bifurcation angle («) (shown
by panels a and b, respectively)

‘r(a) Np=0.5 1 1(b) N=05 1
A — Np=1 | af — N=1

Fig. 9 Pressure gradient (?T?) vs axial direction (£) with variation of Brownian motion parameter (Ny,) and thermophoresis

parameter(N;) (shown by panels a and b, respectively)

by viscous forces and vice versa for Grt > 1. For the intermediate instance of Grt = 1, both thermal
buoyancy and viscous forces are equal with order of magnitude. Pressure differences are generally enhanced
with increasing thermal Grashof number. Figure 7b discloses that the influence of the species basic-density
Grashof number (Grp) on the pressure difference is also enhanced to that of the thermal Grashof number.
Increasing (Grp) signifies the (raction of species buoyancy forces to the viscous hydrodynamic forces. For
the case where both forces are the same, i.e., Grrg = 1 is situated as intermediate pressure difference. The
pressure difference remains above in the region (—1 < Q < 0) for the daughter artery, and the reverse trend
is observed in the region (0 < Q < 1) for the parent artery.

Figures 8, 9, and 10 are representing the effects of Hartman number (M), bifurcation angle («), ther-
mophoresis parameter (N;), Brownian motion parameter(Ny), thermal Grashof number (G,;), and species

Grashof number (G,,.) on the pressure gradient (%%) on both sides of the apex. Clearly, the pressure gradient

is of sinusoidal form in parent and daughter artery, and the amplitude in the parent artery is significantly lower
than the amplitude in the daughter artery. From Fig. 8a, it is seen that the pressure gradient is decreasing
with an increase in the value of the Hartman number (M), and from Fig. 8b it is also seen that the pressure
gradient remains the same in the parent artery whereas it decreases in the daughter artery with the increase in
the bifurcation angle («). From Fig. 9a, it is seen that the pressure gradient is decreasing with an increase in the
value of Brownian motion parameter (Ny), and from Fig. 9b it is also seen that the pressure gradient increases
with the increase in thermophoresis parameter (V) in both parent and daughter artery. From Fig. 10a, b, it is
seen that the pressure gradient is increasing with an increase in the value of thermal Grashof number (G,..)
and species Grashof number (G,,.) in both parent and daughter artery.

From Figures 8, 9, and 10, it is seen that the pressure gradient behaves in a normal manner, but it flustered
moderately near the flow divider in the parent artery due to the degeneration at the start of the flow divider.
All the profiles are locally increased until the inset of lateral junction then small decrease is exhibited, and
then increases until the flow divider. Thereafter, it starts sinusoidal behavior with attaining longer amplitude
because of the diverging of the blood flow at bifurcation of the artery.
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Fig. 10 Pressure gradient %g) vs axial direction (¢ ) with different values of thermal Grashof number (G ) and species Grashof
number (G,) (shown by panels a and b, respectively)

Fig. 11 Plot shows streamlines for different values of the magnetic field M.a M =05,bM =1,c M =2

Table 1 Resistance (turbulence) A for different amplitudes of the walls for all values of axial distance &

A M =05 M=1 M=2
e=0 Parent artery 3.2407 3.01278 2.1146
Daughter artery —8.0721 —8.9740 —12.5659
e=0.1 Parent artery 3.4081 3.2050 2.4072
Daughter artery —5.4942 —6.2940 —9.4777
e=0.2 Parent artery 3.5265 3.3435 2.6261
Daughter artery —3.6791 —4.3967 —17.2513

The streamlines on the central line in the frame are structured under specific conditions in order to encircle a
bolus of fluid particles circulating together with closed streamlines. This occurrence is recognized as trapping,
which is the peristaltic motion, as given in detail by Fung and Yih [30], and trapping for stenotic arteries
is discussed by Ahmed and Nadeem [31-34]. Figure 11 shows that the trapping bolus size is enhanced by
escalating the magnetic field in the parent artery section while the boluses are grown in the daughter artery by
enhancing the magnetic field.

The turbulence increases the resistance dramatically so that large increases in pressure will be required to
further increase the volume flowrate. From Table 1, it is noticed that with the increase in the magnetic field
the resistance decreases, so the phenomena control the turbulence in the flow field in the bifurcated artery
for all values along the axial distance &£. At low Reynolds numbers, the flows tend to be dominated laminar
(sheet-like) as performed in this study, while at high Reynolds numbers turbulence results.

5 Concluding remarks

The examination of nanofluid is featuring heat transfer within the axisymmetric two-dimensional bifurcated
peristaltic channel. It were developed closed-form analytical solutions with the Mathematica applications. The



