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This paper presents a finite element solution for the mixed convection micropolar
fluid flow between two parallel plates with varying temperature. The governing differ-
ential equations are solved numerically using the finite element method. The effect of
important parameters, namely pressure gradient, micropolar parameter and surface,
condition parameter on velocity, microrotation as well as on temperature functions
has been studied. It is noticed that the micropolar fluids act as a cooling agent as
well as a drag reducing fluids.

Notations

f dimensionless velocity function,
g dimensionless microrotation,
T temperature,
ge gravitational acceleration,
N microrotation,
P pressure,

∆P dimensionless pressure gradient,
Q volumetric flow rate,
c varying temperature factor,
x streamwise coordinate,
y normal coordinate,
u velocity along the x-axis,
A dimensionless microrotation parameter,
R dimensionless micropolar parameter,
wi arbitrary test functions,
kf coefficient of thermal conductivity,
2L distance between the plates,
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S dimensionless wall heat parameter,
m wall heat ratio parameter; change in m produces unequal

temperatures at the walls.

Greek letters

η dimensionless coordinate perpendicular to the plates,
µ dynamic viscosity,
ρ density of the fluid,
κ gyro-viscosity coefficient,
γ micropolar parameter,
θ dimensionless temperature,
β volumetric coefficient of thermal expansion,
ψi interpolation functions.

1. Introduction

Eringen [1] introduced the concept of microfluids, which deals with a class
of fluids, exhibiting certain microscopic effects arising from the local structure
and micro-motions of the fluid elements. These fluids can support stress moments
and body moments and are influenced by the spin inertia. Later Eringen [2]
developed a subclass of these microfluids, called micropolar fluids, where the
micro-rotational effects and micro-rotational inertia exist but they do not sup-
port stretch. They can support couple stresses and body couples only. Physically
some polymeric fluids, fluids containing small amounts of polymeric additives,
blood, paints, lubricating oils, liquid crystals, colloidal fluids and suspension fluid
may be represented by the mathematical model, underlying micropolar fluids.
An excellent review of micropolar fluids and their applications were provided by
Ariman et al. [3].

Hoyt and Fabula [4] have shown experimentally that the fluids containing
minute polymeric additives indicate considerable reduction of the skin friction
(about 25–30%); a concept, which is well explained by the theory of micropolar
fluids. As an application, these fluids with microstructure are also capable of
representing the body fluids.

The problems of micropolar fluid flow between two vertical plates (channel)
are of great technical interest. A lot of attention has been given by many re-
searchers. Sastry and Rao [5] have studied the effect of suction in the laminar
flow of a micropolar fluid in a channel, considering the Poiseuille flow at the
entry of the channel. Bhargava and Rani [6] have examined the convective
heat transfer in micropolar fluid flow between parallel plates. Its extension to
free and forced convection is an interesting area of research including liquid crys-
tals, dilute solutions of polymer fluids and many types of suspensions, since in
many configurations in the technology and nature, one continually encounters
masses of fluid rising freely in an extensive medium due to the buoyancy ef-
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fects. Agarwal and Dhanapal [7] analyzed free convection micropolar fluid
flow between two parallel porous vertical plates. The problem of fully developed
free convection of a micropolar fluid in vertical channels has been discussed by
Chamkha et al. [8]. Srinivasacharya et al. [9] have investigated the problem
of unsteady Stokes flow of micropolar fluid between two parallel porous plates.
In a forced convection situation, natural convection effects are also present in the
presence of gravitational body forces. The situation where both the natural and
forced convection effects are of comparable order is called mixed or combined
convection.

Gorla et al. [10] studied the fully developed laminar mixed convection flow
of a micropolar fluid between two vertical parallel plates maintained at uniform
but different temperatures. Excellent applications can be found in Nigam et al.

[11], where the authors discussed the problem of micropolar fluid film lubrication
between two parallel plates with reference to human joints. One of the recent
but excellent papers demonstrating the basic theories of micropolar fluids and
its applications is that given by Łukaszewicz [12].

The purpose of the present paper is to analyze the mixed convection flow of
a micropolar fluid between two vertical parallel plates with varying temperature.
Such type of study may be applicable in nuclear reactors, heat exchangers and
various electronic devices. Perhaps the most important question here is the effect
of buoyancy on the forced convection transport rates. The buoyancy forces may
aid or oppose the forced flow causing an increase or decrease in the heat transfer
rates.

In this paper, the set of coupled nonlinear differential equations governing
the flow, microrotation and temperature fields are solved by the finite element
method and the results have been compared with those obtained by Gorla
et al. [10]. A discussion is provided for the effect of the pressure gradient pa-
rameter, micropolar parameter and surface condition parameter on the flow,
microrotation and temperature profiles. The influence of temperature on these
functions, when it varies linearly along the x-axis, has been also discussed.

2. Mathematical analysis

Consider steady, laminar mixed convection flow of an incompressible mi-
cropolar fluid passing between two infinite vertical parallel plates. The plates
are kept at a distance 2L apart, parallel to the direction of the gravitational
body force. The x-axis extends along the plate and is located along the cen-
terline of the channel, while the y-axis is normal to the plates. ‘u’ is the ve-
locity component along the x-axis, N – the component of microrotation and
T – the temperature. Temperature is varying linearly along the x-axis with cx
and mcx being the temperatures of the left (y = −L) and the right-hand plate
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(y = L) respectively. Thus the governing equations of this type of flow can be
written as:
Momentum:

(2.1) (µ+ κ)
d2u

dy2
+ κ

dN

dy
− dP

dx
+ ρgeβT = 0.

Angular momentum:

(2.2) γ
d2N

dy2
− κ

du

dy
− 2κN = 0.

Energy equation:

(2.3) kf
d2T

dy2
+
(

µ+
κ

2

)

(

du

dy

)2

+
κ

2

(

du

dy
+ 2N

)2

+ γ

(

dN

dy

)2

= 0.

The question of boundary conditions for structured fluids deserves some ad-
ditional comments. Eringen suggested the no-spin boundary condition as being
equivalent to a no-slip condition. This condition corresponds to strong concen-
tration of microelements in the vicinity of the boundary. The physical interpre-
tation is that there is a fluid-solid interface with strong interactions such that
the microstructure does not rotate with respect to the surface.

The other boundary condition, suggested by Ahmadi [13], corresponds to
the condition that the antisymmetric part of the stress is zero on the surface,
which requires that the particle spin should be equal to fluid vorticity at the
boundary. In other words, in the neighborhood of a rigid boundary the effect of
microstructure must be negligible since the suspended particles cannot get closer
to the boundary than their radius. For example in the case of blood flow, it is
observed that the red cells do not get very close to the boundary. Therefore, in
the neighborhood of the boundary the only rotation is due to fluid shear and
therefore, the gyration vector must be equal to the angular velocity. Dahler
and Scriven [14] demonstrated that the general boundary conditions may have
important applications.

Kirwan [15] analysed a general linear relation between the microrotation
rate and vorticity at the rigid boundaries given by:

N (x, 0) = −s
(

∂u

∂y

)

y=0

,

where s is the surface condition parameter and it varies from 0 to 1.
Another important type of boundary condition explained by Peddieson

[16] is the non-vanishing angular velocity at the boundary. Using this result,
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Gorla [10] demonstrated that the micropolar fluid model is capable of pre-
dicting results, comparable to the characteristics found in turbulent flows. The
boundary conditions similar to those used by Gorla [10], have been assumed
here.

The appropriate physical boundary conditions are given by

(2.4)
y = −L : u = 0, N = No, T = cx,

y = L : u = 0, N = No, T = mcx,

wherem is the wall temperature ratio parameter and c is the varying temperature
factor.

Introducing the dimensionless functions f , g and θ, defined by

(2.5)

η =
y

L
, u =

Uo

S
f, T =

cL

S
θ,

N =
Uo

LS
g, Uo =

ρgeβL
3c

µ
, S =

µU2
o

kfcL
.

The set of differential equations (2.1)–(2.3) can be written in the following
form:

(2.6) (1 +R) f ′′ +Rg′ + θ =
µU2

o

kfρgeβ (cL)2
dP

dx
,

(2.7) Ag′′ − f ′ − 2g = 0,

(2.8) θ′′ +

(

1 +
R

2

)

f ′2 +
R

2

(

f ′ + 2g
)2

+ARg′2 = 0,

where R = κ/µ is the dimensionless micropolar parameter, A = γ/κL2 is the di-

mensionless microrotation parameter and ∆P =
µU2

o

kfρgeβ (cL)2
dP

dx
is the pressure

gradient parameter.

Thus the condition: ∆P = 0 ⇒ dP

dx
= 0 corresponds to a free convection flow,

while non-zero values of the pressure gradient correspond to a mixed convection
flow.

The corresponding boundary conditions given in Eq. (2.10) reduce then to

(2.9)

η = −1; f = 0, g =
LS

Uo
No = go, θ =

x

L
S,

η = 1; f = 0, g =
LS

Uo
No = go, θ = m

x

L
S.
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The differential equations (2.14)–(3.5) with the boundary conditions as those
given in (3.7) have been solved numerically using the finite element method for
the different parameters, namely the pressure gradient parameter ∆P , micropo-
lar parameter R, surface condition parameter go and variable x.

3. Method of solution

3.1. Finite element method

The set of differential equations given in Eqs. (2.14)–(3.5) are highly nonlinear
therefore it cannot be solved analytically. Hence finite element method has been
used in obtaining their solution. The steps involved in the finite-element analysis
are as follows:

1. Division of the domain into linear elements, called the finite element mesh.
2. Generation of the element equations using variational formulations.
3. Assembly of the element equations as obtained in steps (2).
4. Introduction of the boundary conditions to the equations obtained in (3).
5. Solution of the assembled algebraic equations.
The assembled equations can be solved by any of the numerical technique viz.

Gaussian elimination, LU Decomposition method etc. The details of the method
used here can be studied in the paper given by Reddy [17].

3.2. Variational formulation:

The variational form associated with Eqs. (2.14) to (3.5) over a typical two-
node linear element (ηe, ηe+1) is given by

ηe+1
∫

ηe

w1

{

(1 +R) f ′′ +Rg′ + θ − ∆P
}

dη = 0,(3.1)

ηe+1
∫

ηe

w2

{

Ag′′ − f ′ − 2g
}

dη = 0,(3.2)

ηe+1
∫

ηe

w3

{

θ′′ + (1 +R) f ′2 + 2Rf ′g + 2Rg2 +ARg′2
}

dη = 0,(3.3)

where w1, w2 and w3 are the arbitrary test functions which may be viewed as
the variations in the functions f, g and θ, respectively.
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3.3. Finite element formulation

The finite element model may be obtained from (3.10)–(3.3) by substituting
the finite element approximations of the form

(3.4) f =

2
∑

j=1

fjψj , g =

2
∑

j=1

gjψj , θ =

2
∑

j=1

θjψj

with
w1 = w2 = w3 = ψi (i = 1, 2, )

where ψi are the shape functions for a typical element (ηe, ηe+1) which are
assumed in the form:

ψ
(e)
1 =

ηe+1 − η

ηe+1 − ηe
, ψ

(e)
2 =

η − ηe

ηe+1 − ηe
, ηe ≤ η ≤ ηe+1.

The finite element model of the equations thus formed is the following:

(3.5)











[

K11
] [

K12
] [

K13
]

[

K21
] [

K22
] [

K23
]

[

K31
] [

K32
] [

K33
]





















{f}
{g}
{θ}











=











{

r1
}

{

r2
}

{

r3
}











.

Here [Kmn] and [rm] (m,n = 1, 2, 3 ) are the matrices of order 2 × 2 and
2 × 1 respectively, hence each matrix element is of the order 6 × 6 . The matrix
[K23] is the null matrix, while the matrices [K11], [K13], [K22] and [K33] are
symmetric matrices. All these matrices are defined as follows:

(3.6)

K11
ij = − (1 +R)

ηe+1
∫

ηe

dψi

dη

dψj

dη
dη, K12

ij = R

ηe+1
∫

ηe

ψi
dψj

dη
dη,

K13
ij =

ηe+1
∫

ηe

ψiψjdη K21
ij = −

ηe+1
∫

ηe

ψi
dψj

dη
dη,

K22
ij = −A

ηe+1
∫

ηe

dψi

dη

dψj

dη
dη − 2

ηe+1
∫

ηe

ψiψjdη, K23
ij = 0,

K31
ij = (1 +R)

ηe+1
∫

ηe

ψi
df̄

dη

dψj

dη
dη + 2R

ηe+1
∫

ηe

ψiḡ
dψj

dη
dη,
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(3.6)
[cont.]

K32
ij = 2R

ηe+1
∫

ηe

ψiḡψjdη +AR

ηe+1
∫

ηe

ψi
dḡ

dη

dψj

dη
dη,

K33
ij = −

ηe+1
∫

ηe

dψi

dη

dψj

dη
dη, r1i =

ne+1
∫

ne

∆P ψidη − (1 +R)

(

ψi
df

dη

)ne+1

ηe

,

r2i = −A
(

ψi
dg

dη

)ne+1

ηe

, r3i = −
(

ψi
dθ

dη

)ne+1

ηe

,

where

f̄ =
2
∑

i=1

f̄iψi, ḡ =
2
∑

i=1

ḡiψi.

The system of equations after assembly of the elements is nonlinear, therefore
an iterative scheme is used to solve it. The system is linearized by incorporating
the functions f̄ and ḡ, which are assumed to be known. Since the whole domain
is divided into a set of 40 intervals of equal length, say 0.05, thus we obtain a set
of 123 equations with 6 boundary conditions. After applying the given boundary
conditions, only a system of 117 equations remains for the solution, which is
performed iteratively maintaining an accuracy of 0.0005.

4. Results and discussion

The velocity, microrotation and temperature functions have been computed
by using the finite element method and the results are shown graphically in
Figs. 1–12. The values of material parameters S, L and A are taken to be fixed
at 1.0 each, while m is kept to be fixed at 2.0, and the effect of other important
parameters, namely pressure gradient parameter ∆P , micropolar parameter R
and surface condition parameter go upon these functions has been studied.

Figures 1, 5 and 9 depict the variation of velocity, microrotation and temper-
ature functions with pressure gradient parameter ∆P , while other parameters
x, R and go are assumed to be fixed as 1.0, 1.0 and 3.0 respectively. Figures 2, 6
and 10 illustrate the variation of these functions with x, while other parameters
∆P, R and go are taken to be fixed as 1.0, 1.0 and 3.0, respectively. Figures
3, 7 and 11 show the variation of these functions with micropolar parameter R
while other parameters ∆P, x and go are fixed as 1.0, 1.0 and 3.0 respectively.
Figures 4, 8 and 12 represent the variation of these functions with the surface
condition parameter go while the other parameters ∆P, x and R are assumed to
be fixed as 1.0 each.
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Fig. 1. Velocity distribution for different
∆P (x = 1, R = 1, g◦ = 3).

Fig. 2. Velocity distribution for different x
(∆P = 1, R = 1, g◦ = 3).
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Fig. 3. Velocity distribution for different R
(∆P = 1, x = 1, g◦ = 3).

Fig. 4. Velocity distribution for different
g◦(∆P = 1, R = 1, x = 1).
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Fig. 5. Microrotation distribution for different
∆P (x = 1, R = 1, g◦ = 3).

Fig. 6. Microrotation distribution for different
x(∆P = 1, R = 1, g◦ = 3).
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Fig. 8. Microrotation distribution for different
go(∆P = 1, R = 1, x = 1).
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Fig. 10. Temperature distribution for different
x(∆P = 1, R = 1, g◦ = 3).
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Figure 1 represents the variation of velocity with the pressure gradient pa-
rameter ∆P . The velocity decreases with increases in the pressure gradient pa-
rameter ∆P . It is also clear from the figure that with an increase of ∆P , the
maxima are shifted towards the right-hand plate (η = 1). From Figs. 2, 3 and 4,
it is observed that the velocity increases with an increase in x, micropolar para-
meter R and with the absolute value of surface condition parameter go. However,
the velocity for the Newtonian case (R = 0) is sufficiently small as compared to
the micropolar fluids (R 6= 0). Obviously an increase in go shifts the maxima
towards the right-hand plate while with increase in the negative value of go, the
maxima are shifted towards the left-hand plate; which depicts the behaviour of
maximum velocity with variable go.

Figures 5, 6, 7 and 8 depict the variation of microrotation. Figure 5 shows that
in the first half-region, microrotation increases with an increase of the pressure
gradient parameter, while it decreases in the second half-region, which is opposite
to x and micropolar parameter R as shown in Figs. 6 and 7. From Fig. 8 it
is clear that microrotation increases with the increase of the surface condition
parameter go. It is also clear from the Fig. 8 that for the positive value of
go, microrotation decreases continuously, until it reaches the minima and then
increases continuously, while with the negative value of go microrotation increases
continuously, until it reaches the maxima and then decreases continuously. Thus
the pattern is different for negative and positive values of go.

The distribution for the temperature function has been shown in the Figs. 9,
10, 11 and 12. Temperature decreases with the increase of the pressure gradient
parameter, while it increases with increasing x the micropolar parameter and
with the absolute value of surface condition parameter. Temperature is much
lower for Newtonian fluids (R = 0 ) as compared to the micropolar fluids. The
temperature distribution is nearly linear for viscous fluids. It is clear from the
figures that maximum temperature remains in the first half-region while from
Fig. 12 it is observed that for large negative value of go, maximum temperature
can be obtained in the second half-region.

The variation of skin friction and the rate of heat transfer on both plates
with respect to the pressure gradient parameter, micropolar parameter, surface
condition parameter and with x are given in Table 1 and 2, respectively.

It is clear from Table 1 that the skin friction numerically decreases with an
increase of the pressure gradient parameter ∆P , while it numerically increases
with an increase in x, the micropolar parameter R and with the absolute value of
surface condition parameter go. Thus the skin friction can be effectively reduced
by introducing the pressure gradient.

From Table 2 it is observed that the rate of heat transfer numerically de-
creases with an increasing ∆P , while it increases numerically with the increase
of x, the micropolar parameter R and with the absolute value of the surface con-
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Table 1. Table for the skin friction {f ′}η=−1, 1 with different values of the
pressure gradient parameter ∆P , micropolar parameter R, surface condition

parameter go and with x.

S = L = A = 1.0, m = 2.0 {f ′}η=−1, 1

R = x = 1, go = 3

∆P
η

0 1 2 3

−1 2.4154 1.5319 0.8200 0.2032
1 −3.2501 −2.4446 −1.7931 −1.2270

∆P = R = 1, go = 3

x
η

0 1 2

−1 0.5626 1.5319 2.9454
1 −1.4165 −2.4446 −3.8744

∆P = x = 1, go = 3

R
η

0 1 2 3 4

−1 0.3514 1.5319 2.2379 2.7486 3.1718
1 −0.6375 −2.4446 −3.2543 −3.7725 −4.1720

∆P = x = R = 1

go

η
−3 −2 2 3

−1 2.2681 1.1315 0.5656 1.5319
1 −1.6482 −0.6964 −1.2930 −2.4446

Table 2. Table for the Nusselt number {−θ′}η=−1, 1 with different values
of the pressure gradient parameter ∆P , micropolar parameter R, surface

condition parameter go and variable x.

S = L = A = 1.0, m = 2.0 {−θ′}η=−1, 1

R = x = 1, go = 3

∆P
η

0 1 2 3

−1 −20.4989 −16.2988 −13.7162 −12.0356
1 11.7847 9.8791 9.0607 8.8509

∆P = R = 1, go = 3

x
η

0 1 2

−1 −12.2673 −16.2988 −24.4416
1 9.3425 9.8791 13.3187

∆P = x = 1, go = 3

R
η

0 1 2 3 4

−1 −0.5672 −16.2988 −37.4175 −62.0292 −89.7758
1 −0.4011 9.8791 20.7529 32.5027 45.2981

∆P = x = R = 1

go

η
−3 −2 2 3

−1 −10.6699 −4.6916 −6.3802 −16.2988
1 15.2722 5.3884 3.7797 9.8791

dition parameter go. Thus these parameters can be used for controlling the rate
of heat transfer. If the plate temperature is higher than the fluid temperature,
then the increase in the rate of heat transfer shows that more and more heat is
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transferred from the plate to the fluid. This physically means that the cooling
effect on the plates increases. Thus fast cooling can be achieved by increasing
the micropolar parameter, surface condition parameter and with an increase
in x. That is required in polymer industry where after generation of very high
temperature, fast cooling is required to achieve a regular structure.

5. Conclusions

1. Velocity decreases with an increase of the pressure gradient parameter,
while it increases with an increase in x, with the micropolar parameter
and with the absolute value of surface condition parameter. Thus the flow
of the fluid can be controlled by simulating these parameters.

2. Pressure gradient parameter ∆P can be used effectively for controlling/si-
mulating the rise in the temperature field.

3. Skin friction numerically increases with increasing values of x, R and go
while it decreases with ∆P . Thus the drag forces can be reduced by using
the pressure gradient parameter.

4. The rate of heat transfer numerically decreases with increasing ∆P , while
it increases with an increase in x, micropolar parameter R and with the
absolute value of surface condition parameter go. Thus fast cooling of the
plate can be achieved by increasing the micropolar parameter, the surface
condition parameter and with an increase in x. Thus this problem may be
very useful in various engineering applications.
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