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ered the effects of buoyancy in the case of inclined,
continuous moving sheets. But in nature, along with the
free convection currents, the flow is also caused by the
differences in concentration or material constitution,
e.g., The atmospheric flows. The effects of mass transfer
of the flow past an infinite vertically moving plate were
studied by Soundalgekar [7]. Ganesan & Muthukumar-
aswamy [8] analyzed an unsteady flow past an
impulsively started semi-infinite vertical plate with

heat and mass transfer by implicit finite difference
scheme.

In literature only very few authors studied the flow past
semi-infinite vertical cylinder. Yang [9] made a study of
unsteady laminar free convection on vertical plates and
cylinders to establish necessary and sufficient conditions
under which similarity solutions are possible. On the basis
of these conditions, all possible cases are derived includ-
ing those for unsteady conditions. Bottemanne [10]
studied the combined effect of heat and mass transfer in
the steady laminar boundary layer of a vertical cylinder
placed in still air. Minkowycz & Sparrow [11] used local
velocity and temperature profiles for isothermal cylinder
placed in air.

In the process of manufacturing glass or polymer fibers,
filaments of hot materials are extruded through a circular
orifice. They are cooled as they pass through the sur-
rounding environment. A fiber can be regarded as a
continuous infinite circular cylinder issuing into the fluid
of infinite extent. Several authors have analysed the flows
generated by continuously moving surfaces. Badr &
Dennis [12] carried out a time dependent viscous flow
past an impulsively started rotating and translating
circular cylinder. The cooling of fibres in the formation
process was studied by Bourne & Dixon [13]. In the
investigation the effect of buoyancy force was neglected.
Collins & Dennis [14] made a numerical method of
expansion in powers of the time for an impulsively started
circular cylinder by using an implicit time-dependent
numerical integration procedure. They [15] are also
studied symmetrical flow past a uniformly accelerated
circular cylinder.

But the effects of buoyancy forces on flow over an im-
pulsively moving semi-infinite vertical cylinder with heat
and mass transfer has not received the attention of any
researcher. In many industrial applications, the flow past a
moving semi-infinite vertical cylinder plays an important
role. Here, intrusive may be taken as an isothermal vertical
cylinder with impulsive motion subjected to uniform
concentration. It is now proposed to study the effects of
heat and mass transfer on the natural convection flow of
an incompressible viscous fluid past a semi-infinite iso-
thermal vertical cylinder using an implicit finite difference
scheme.

2

Mathematical analysis

Consider the free convection flow of a viscous incom-
pressible, laminar flow over an impulsively moving semi-
infinite vertical cylinder of radius ry. Initially both cylinder
and the fluid are stationary at the same temperature T _
and also at the same concentration level C/ . At a time

' > 0, the cylinder starts moving in the vertical direction
with velocity uy. The temperature and concentration on
the surface of the cylinder are also raised to T,, and C,.
The effect of viscous dissipation is assumed to be negli-
gible. The axis and radial co-ordinates are taken to be x
and r, with x-axis measured vertically upward along the
axis of the cylinder and r-axis measured normal to axis
of cylinder. Under these assumptions, the governing
boundary layer equations of continuity, momentum,
energy and species concentration with Boussinesq’s
approximation are as follows:
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The initial and boundary conditions are
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Introducing the following non-dimensional quantities
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Eqgs. (1)-(4) are reduced to the following form:
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The corresponding initial and boundary conditions in
non-dimensional quantities are given by



t<0: U=0, V=0, T=0, C=0 forall X and R
t>0: U=1, V=0, T=1, C=1atR=1
U=0, T=0, C=0atX=0
U0, T—0, C—>0asR—oc (11)
3

Numerical technique

In order to solve the unsteady, non-linear coupled

Egs. (7)-(10) under the condition (11), an implicit finite
difference scheme of Crank-Nicolson type has been em-
ployed. The region of integration is considered as a rect-
angle with sides Xpax(= 1.0) and Rpyax(= 20.0) where
Rpax corresponds to R = oo which lies very well outside
the momentum, thermal and concentration boundary
layers. Appropriate mesh sizes AX = 0.02, AR = 0.25 and
time step At = 0.01 are considered for calculations. The
finite-difference equations corresponding to Egs. (7)-(10)
are as follows:
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Here i-designates X-direction iAX, j-designates R-direc-
tion 1+ (j — 1)AR and the superscript m designates a
value of time mA¢. During any one-time step, the coeffi-
cients U}; and V[ appearing in Eq. (12)-(15) are treated
as constants. The values of U, V, T and C are known

at time t = 0 from the initial conditions. The values of
C, T, V and U at the next time step t = At are calculated
as follows:

Equation (15) at every internal nodal point on a par-
ticular i-level constitute a tri-diagonal system of equations
which is solved by Thomas algorithm, described by Car-
nahan et al. [16]. Thus, the values of C are known at every
nodal point on a particular i-level at + = A¢. Similarly the
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values of T are calculated from Eq. (14). Using the values
of Cand T in Eq. (13), values of U are calculated. Then the
values of V are calculated explicitly by using Eq. (12) at
every nodal point on a particular i-level. After computing
values corresponding to each i at a time level, the values at
the next time level are determined similarly. Computations
are repeated until the steady state is reached. The steady-
state solution is assumed to have been reached when the
absolute difference between values of velocity U, temper-
ature T as well as concentration C at two consecutive time
steps are less than 107 at all grid points.

After experimenting with few set of mesh sizes, the
mesh sizes have been fixed at the level AX = 0.02,
AR = 0.2, with time step At = 0.01. In this case, spatial
mesh sizes are reduced by 50% in one direction, and later
in both directions, and results are compared. It is observed
that, when the mesh size is reduced by 50% in the
R-direction, the results differ in the fifth place while the
mesh sizes are reduced by 50% in X-direction or in both
directions the results are correct to fourth decimal place.
Hence, the above mesh sizes have been considered as
appropriate.

5

Results and discussion

The transient velocity profiles for different values of the
Schmidt number, the Prandtl number, and the thermal
Grashof number and mass Grashof number are shown in
Fig. 1. The velocity profiles presented are those at X = 1.0.
It is observed that the velocity slowly increases with time,
reaches a temporal maximum around time t = 0.77 and
becomes steady at time ¢ = 7.44. It also observed that the
velocity increases with increasing values of Gr and Ge and
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0.77¢

Fig. 1. Transient velocity profiles at X = 1.0. “temporal
maximum

decreasing values of Sc. The contribution of mass diffusion
to the buoyancy force increases the maximum velocity
significantly.

The transient temperature profiles for different Gr, Gc,
Sc and Pr is plotted in Fig. 2. It is known that Pr plays an
important role in flow phenomena because it is a measure
of the relative magnitude of viscous fluid boundary layer
thickness to the thermal boundary layer thickness. The
thermal boundary layer thickness decreases with increas-
ing values of Pr. It is observed that temperature decreases
with increasing values of Gr or Gc. The time taken to reach
the steady state increases with decreasing values of Sc, Gr
and Gc when Pr is high. The temporal maximum is also
shown in Fig. 2 around the time ¢t = 1.02 and becomes
steady state ¢ = 8.85.

The concentration profiles for different Schmidt num-
bers are shown in Fig. 3. It is observed that the concen-
tration is increasing with decreasing values of Schmidt
number. The time taken to reach the steady state increases
with decreasing values of Sc. The transient concentration
profiles for different values of Gr and Gc are shown in
Fig. 4. It is clear that the concentration increases with
decreasing values of Gr or Gc.

Knowing the numerical values of velocity, concentra-
tion, we now calculate the local and average skin-fric-
tion, the rate of heat transfer and mass transfer both in
the transient and steady state conditions. The local as
well as average skin-friction, Nusselt number and
Sherwood number in terms of dimensionless quantities
are given by
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Fig. 2. Transient temperature profiles at X = 1.0. *Steady state
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Fig. 3. Transient concentration profiles at X = 1.0 for different
Sc. "Steady state
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Fig. 4. Transient concentration profiles at X = 1.0 for different
Gr and Gc. *Steady state
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These derivatives involved in the Eqgs. (16)-(21) are eval-
uated using five-point approximation formula and inte-
grals are evaluated using Newton-Coats formula.

The local skin frictions are plotted in Fig. 5. It is
observed that the local skin-friction decreases as X
increases. The local wall shear stress increases with
decreasing values of Gr or Gc. It is observed that there is
fall in skin friction due to decreasing Sc. The local Nusselt
number for different Gr, Gc and Sc are shown in Fig. 6.
The local Nusselt number increases with decreasing val-
ues of Sc and increases with increasing Gr or Gc. This
trend is just opposite in local Sherwood number with
respect to the Sc because the concentration profiles
decreases with increasing values of Sc, near the cylinder
as shown in Fig. 7.

The effect of Gr, Gc and Sc on the average values of skin
friction, Nusselt number and Sherwood number are shown
in Fig. 8-10, respectively. The average skin friction in-
creases with decreasing values of Gr or Gc throughout the
transient period. The Nusselt number increases with
decreasing Sc and it increases with increasing Gr or Gc.
The average Sherwood number increases with increasing
Schmidt number.
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Fig. 6. Local Nusselt number

6
Conclusion

1. The time required to reach the steady in velocity and
temperature is more when Pr is high. Time taken to reach
the steady increases as Gr decreases.
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Fig. 8. Average skin-friction Fig. 10. Average Sherwood number
3. The rate of heat transfer increases with increasing

2. The skin friction values are negative at small values of values of Pr and Gr or Gc and decreasing values of Sc.
the Sc, i.e., there may occur separation near the cylinder, 4. The mass of heat transfer is found to become more
but with large values of Sc, the skin friction values are effective as the thermal buoyancy force increases. While
positive indicating that there may not occur separation of the local surface heat transfer is enhanced as the Schmidt
the flow at the cylinder. The shearing stress increases with number is decreased, the surface mass transfer increases
increasing value of Pr and decreasing values of Gr. with increasing Schmidt number.



