Classical-Quantum Approximation
for a Harmonic Oscillator Coupled to a Classical Projectile

Quantum Evolution: Time-Dependent Hamiltonian

The oscillator sees a time-dependent potential V(a:, y(T)). Its Schrodinger equation is
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Expanding in the eigenbasis {¢,(x)} with energies E,, gives
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Projecting onto ¢,, yields

where
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Definition of B,,,(7)

It is often convenient to absorb the phase into a single coupling matrix,
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so that the quantum—amplitude equations become
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Analytic Form of M,,,

The static overlap matrix
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can be expressed in closed form as
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where L,(Ca) is the associated Laguerre polynomial.



Classical (Ehrenfest) Equations

The classical projectile evolves under the quantum expectation of the coupling:
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with
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Coupled ODE System

Putting both pieces together, one solves simultaneously:
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where C = (Cj,...,Cn_1)T and B, (7) is defined above.



