Linear least-squares fits with errors in both coordinates

B. Cameron Reed

Department of Physics, Saint Mary’s University, Halifax, Nova Scotia B3H 3C3, Canada

(Received 28 July 1987; accepted for publication 2 August 1988)

York’s solution to the problem of linear least-squares fits with errors in both coordinates [D.
York, Can. J. Phys. 44, 1079 (1966) ] is shown to be exact and not subject to the erroneous results
that attempts to modify standard least-squares algorithms can produce. Detailed examples of the
use of York’s method are given; a FORTRAN implementation suitable for use on personal

computers is available to interested parties.

1. INTRODUCTION

It is virtually certain that any physical scientist will at
some time be faced with the task of determining the “best”
straight line through data in the Cartesian plane. Students
of physics are usually exposed to this “linear least-squares”
problem as undergraduates in advanced laboratory
courses, and the solution when the abscissa values are tak-
en to be error-free is well known' and now involves no more
than a few key strokes on a calculator. However, on the
problem of least-squares fits involving errors in both co-
ordinates, the textbooks largely fall silent. The intuitively
obvious approach of defining the best-fit line as that which
minimizes the sum of the squares of the perpendicular dis-
tances of the points from the line is suitable only when all
points have equal weights in both coordinates. A fully gen-
eral solution capable of admitting varying weights is neces-
sary.

Deming” gave a general solution based on minimizing
the sum

S=Y [Wx)(x, — X))+ W), — Y)?], (D

where (x;, y;) are the observed points, (X, Y;) are predict-
ed values, and W(x,) and W(y,) are the weights in x and y
for point /(i = 1, V), usually assumed to be the reciprocals
of the squares of the measurement uncertainties. Deming
simplified the problem by expanding in a Taylor series
about assumed values of the slope, mtercept and adjusted
points, dropping squared and higher terms. Unfortunately,
neglect of the higher-order terms can lead to significant
errors in some circumstances.

An exact, completely general solution to the linear least-
squares problem, apparently first given by York,> seems
not to be well known despite the frequency with which this
problem arises in research and teaching circles. Unfortu-
nately, York’s article contains misleading statements that
can lead to trouble in some circumstances. Apparently
unaware of York’s work, Orear* devised a solution based
on the “effective variance method,” which he proved to be
exact for linear fits and applicable in an approximate fash-
ion to nonlinear functions. Lybanon® (see also Orear®)
pointed out that an iterative utilization of Orear’s method
would not lead to exact maximum likelihood parameter
estimates, and that in some not uncommon cases no change
in the parameter estimates will result from subsequent iter-
ations! This problem can be safely circumvented, however,
provided one utilizes Orear’s method in the way discussed
by Lybanon.

Given that readers may not be aware of the above prob-
lems, it is possible that many are utilizing erroneous algor-
ithms. The purpose of this article is to resolve the mislead-
ing statements in York’s article, to show that his method is
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an exact solutlon immune from the trap that modified
least-squares algorithms can fall prey to, and to make avail-
able a simple FORTRAN implementation of York’s method
suitable for use on a personal computer.

The outline of this article is as follows: In Sec. II, I reiter-
ate York’s solution, draw attention to his misleading state-
ments, and indicate an easier way to solve for the slope of
the best-fit line. In Sec. II1, I apply York’s method to exam-
ples of well-correlated arid poorly correlated data. Finally,
in Sec. IV, I compare York’s method to the Orear-Ly-
banon approach, show that they are equivalent, and argue

L PN

that York’s solution cannot fall prey to Lybanon’s “trap.”

I1. YORK’S SOLUTION
Assuming that the function to be fitted is of the form
y=mx-+ec, (2)

York showed that the slope m is given by solving the equa-
tion

film) =m* — 3am® 4+ 3m — y =0, (3)
where
WUV
= (36, (4)
«= (2 50)
w2y 2
(2 s wur)ae -, 5
s (me,.) 5 )( ) 5)

( EW U, V) 671, (6)
and

wiy?

=2 %o Wix,)’

where W(x,) and W(p,) are the x and y weights to be

assigned to the data points
The “overall” weights W, are given by

(7)

with
(ji =X — <x>’ (9)
Vi=y:— O, (10)
where
- —1
(x) = 2 W,.xi(z W,) (1)
and

OEDY ny,»(z W,-) : (12)
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The intercept ¢ is given by
c=(y) —mx), (13)

and the errors in the slope and intercept are given by

l —1
o = wmu,—vy(S W) s
3 S Wi(m >y (14)
and
—1
o= [2 W,-x?(z W.-) ]ai,, (15)
respectively.

Finally, in terms of the W, the sum of squared residuals
can be written as

N
S=z W.(y: —c—mx;)>. (16)
i=1
York termed Eq. (3) the “least-squares cubic.” This
equation will have three roots, one of which is presumably
the “correct” least-squares slope. The catch is that Eq. (3)
is not really a cubic because of the implicit dependence of a,
[3, and y on the slope m via the weights W, given by Eq. (8).
York advocated an iterative approach: An initial guess for
m (say, via a no-errors solution) is provided for use in Eq.
(8), Eq. (3) is solved and the “correct” root is used to
update the weights in Eq. (8), and so forth until conver-
gence is reached. Intuitively, one would expect this proce-
dure to converge quickly, particularly for well-correlated
data. We shall see that this is not the case, and that conver-
gence does not necessarily imply that one has found the
“correct” root.
Analytically, the three roots of Eq. (3) are given by

m =a+ (C+D), (17)
my=a—}(C+ D) + }(C— D)\3i, (18)
my=a—}(C+ D) — }(C—D)W3i, (19)

where
C= (B+J4°+BH'"?, (20)

D= (B—\4>+B?"3, (21

with

A= (B—-a%) (22)
and
B= —jaf+iy+a’ (23)

York states (without proof) that Eq. (3) will have three
real roots. This is not true in general, and will lead to disas-
ter if one attempts to computerize his iterative method us-
ing only real variables. A further complication is that York
states that it is usually the third root of the cubic [Eq.
(19)] that is the correct one. While the experience of this
author tends to confirm that wisdom, I find as well that in
some instances the first few iterations may yield a complex
third root from which one must carve off the real part as the
seed value for subsequent iterations. These problems are
illustrated in Sec. ITL

With the advent of interactive personal computers, how-
ever, a much more straightforward solution is possible:
Simply scan f{m) for its real roots ( zeros), bearing in mind
that a, B, and y are functions of m. With even a crude idea
of the slope to start with, it is possible to pin down the roots
very quickly to a number of significant figures greater than
could possibly be justified by the input data. This intuitive-
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ly appealing procedure avoids the difficulties of manipulat-
ing (and interpreting) complex quantities.

In Sec. I11, I illustrate application of the above “iter-
ation” and “‘root-finding” approaches to York’s method to
two disparate cases, one of well-correlated real data and
one of poorly correlated fictitious data.

ITII. EXAMPLES

If one elects to pursue the iterative path in applying
York’s method, it is essential to realize at the outset that
due to the complexity of the coefficients in Eq. (3) it is
impossible to give any general guidelines as to.when one
might expect imaginary roots, or as to when the third root
will or will not be the “correct” one. Armed on the other
hand with the root-finding method, however, it is merely
necessary to evaluate f(m) over suitable ranges in m until
one has isolated the zeros. [t is instructive to compare these
two methods.

To begin with, I developed two separate FORTRAN codes
for use on my IBM-PC. Both commence by giving the oper-
ator a trial slope based on a conventional, no errors, least-
squares fit. The “iterative” program, utilizing complex
arithmetic, then computes and prints the roots of the
“least-squares cubic.” The operator selects the real part of
one of the roots as the input slope for the next pass. Inter-
ation proceeds as long as the operator desires. In the “root-
finding” program, one inputs a range (and increment) of
slopes for which f(m) is to be evaluated. Once the general
location of a root has been established, subsequent passes
over smaller ranges with smaller increments can be used to
pin down the root with arbitrarily great accuracy. In prac-
tice, this procedure is very rapid.

A. Example I: Well-correlated data

Table I gives (x,y) values for 27 points, which are plot-
ted in Fig. 1. All points were assumed to have uncertainties
of 0.01 in both x and y, and weights were assigned as the
squares of the reciprocals of the uncertainties. These data
derive from a real, physical situation: calibrating the colors
of globular star clusters as a function of their spectral
types.” The abscissa represents the difference between the
ultraviolet and yellow light magnitudes of the clusters and
the ordinate represents the difference between the yellow
and infrared magnitudes. The slope given by a convention-
al (minimizing y residuals) least-squares fit is 0.931. With
this value used as a first guess for m, the iterative solution
yields two conjugate complex roots (the first and third),
1.383 + 0.098/, and one real root (the second), — 0.904—

Table I. Data for Example 1.

x y x y x y

0.89 0.67 1.01 0.77 0.88 0.79
1.00 0.64 0.86 0.73 0.92 0.77
0.92 0.76 0.85 0.64 0.92 0.70
0.87 0.61 0.88 0.62 1.01 0.88
0.90 0.74 0.84 0.63 0.88 0.62
0.86 0.61 0.79 0.57 0.92 0.80
1.08 0.77 0.88 0.66 0.96 0.74
0.86 0.61 0.70 0.53 0.85 0.64
1.25 0.99 0.81 0.46 1.04 0.93
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Fig. 1. Linear least-squares fit for the data in Table I. The solid line corre-
sponds to best-fit parameters m = 1.167 + 0.308 and c¢= — 0.365
+ 0.291. The dashed lines show the fit for the combinations of greatest
and least slopes and intercepts. All points were assumed to have uncer-
tainties of + 0.01 in both x and y.

nowhere near what one might expect from looking at the
data. As we are interested in a real root, intuition suggests
the second root as the one to select for subsequent itera-
tions. This leads to convergence following 17 iterations to
two complex roots, 1.360 + 0.190i, and one real root
(again, the second), — 0.857. While convergence to a real
root has been achieved, it is obvious that this root cannot
possibly be the correct best-fit slope.

The only course of action here is to investigate the conse-
quences of selecting one of the other roots as the seed value
for the second and subsequent iterations. The choice is irre-
levant as both the first and third roots have the same real
component. This leads to three real, unequal roots follow-
ing the second iteration. Continuing with the first root as
the input slope for subsequent iterations leads always to
three real roots; however, there is no indication of conver-
gence following 30 iterations. On the other hand, if the
third root is selected following the second iteration, conver-
gence to three real roots, 1.764, — 1.068, and 1.167, is
achieved after nine iterations. The third root (consistent
with York’s statement) is apparently correct, and has an
rms deviation of 0.072. This result is shown as a solid line in
Fig. 1.

Clearly, the appearance of a real (complex) root follow-
ing the first iteration does not imply that root to be the
correct (incorrect) one. Complex roots can arise from well-
correlated data; one must be prepared in the iterative ap-
proach to look at the results of selecting various roots for
subsequent iterations.

The root-finding approach quickly yielded the same two
real roots as the iterative approach: — 0.857 + 0.255 and
1.167 4 0.308, with sums of squared residuals of 5968.4
and 578.0, respectively. The behavior of f(m) is illustrated
in Fig. 2.

While it is immensely satisfying that both implementa-
tions of York’s method yielded the same real roots, the
interpretation of the negative root may not at first sight be
clear. The answer is that the two roots correspond, respec-
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Fig. 2. Behavior of f(m) for the data in Table L.

tively, to maximizing and minimizing Eq. (1). York estab-
lished the “least-squares cubic” by differentiating Eq. (1),
setting the result to zero, and solving by the method of
undetermined multipliers. Solving for the roots of the
“least-squares cubic” yields only those values of m for
which § is an extremum; to establish which root is the cor-
rect one requires calculation of S once m and ¢ are known.
This leaves open the question of possible other local ex-
trema for S; of course, in any “real” situation, one is likely
to have at least a crude idea of what the “true” slope is.
Also, it should be noted that the roots corresponding to
global extrema in .S should yield perpendicular fits within
their errors; in the case of equal uncertainties in both x and
¥, the product of these two roots should be — 1. This is the
case in the above example.

A parenthetic remark concerning this example is appro-
priate at this point. With the fit shown in Fig. 1, 3 of the 27
points are deviant by more than 8 s.d. As one would expect
if §'~ 25 for 27 points, then either the assumption of a linear
relation between x and y is invalid, or there are systematic
errors present that mask the statistical errors. Regardless
of these problems, this example serves to illustrate some of
the situations one can encounter when dealing with errors
in both coordinates.

Finally, this example should not be construed to imply
that iterative convergence will be achieved even if the real
part of an initially complex root is selected as the seed value
for subsequent iterations. This is demonstrated in the next
example.

Table I1. Data for Example I1.

x y

1.333 4 2.469 — 1.367 + 0.297

— 1.009 4- 6.363 7.232 + 4.672
9.720 + 6.045 —0.593 +2.014
—2.079 + 4.061 7.124 + 0.022
8.920 4 5.325 0.468 + 6.868
—0.938 + 5.865 8.664 +2.834
10.94 + 3.993 5.854 + 4.647
5.138 4 3.787 13.35 +4.728
11.37 +3.693 4.279 +2.274
9.421 4+ 4.687 11.63 + 4.659
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Fig. 3. Least-squares fit for the data in Table II. Points were weighted
inversely as the squares of the uncertainties. Here, m = 4.544 + 1.576 and
c= —17.483 + 5.324.

B. Example II: Poorly correlated data

Table II and Fig. 3 show ten poorly correlated data
points and their associated uncertainties, created with a
random number generator. A conventional no-errors solu-
tion gives m = — 0.157. The first iteration of the least-
squares cubic yields the third root to be real (0.010) and
the first two to be complex ( — 1.636 4 1.028/). Consis-
tently selecting of the real part of the third root as the input
slope for subsequent iterations leads to an endlessly repeat-
ing pattern: Iterations n, n + 1, and n + 2 produce roots
identical toiterations #n + 3, n + 4,and n + 5, respectively.
All three roots of iteration n are real (2.102, — 2.006,
0.170) while only the third root of iteration n 4+ 1 is real
(0.011) and only the first root of iteration n 4 2 is real
(0.001 71). Further experimentation showed that if the
second root is selected neither a repeating pattern nor any
clear trend to convergence is evident after 30 iterations.
Convergence is finally achieved on selecting the real part of
the first root; after 12 iterations, it converges to 0.001 66
(5= 833.4) and the other two roots to — 2.192 + 0.216.
Curiously, it was found that if the third (real) root was
selected following the first iteration and the first root there-
after, convergence to the same result is achieved in only
four iterations!

N
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Fig. 4. Behavior of f(m) for the data in Table I1.

645 Am. J. Phys., Vol. 57, No. 7, July 1989

With the root-finding algorithm, one can quickly zero in
on the root at m = 0.001 66. If this is indeed the correct
best-fit slope, we should expect to find a corresponding
maximum S slope at — 1/0.001 66~ — 602. No such root
is evident. After some experimentation, however, a second
root does turn up at m = 4.544 4 1.576 with §' = 13.96.
This root—missed completely by the iterative approach—
is the true best-fit slope. This result is shown as a solid line
in Fig. 3; the behavior of f{m) is illustrated in Fig. 4.

1IV. COMPARISON WITH OREAR’S METHOD

Given that Lybanon has pointed out potential “traps” in
Orear’s general solution to the linear least-squares prob-
lem, it is important to compare the York and Orear solu-
tions. Is York’s exact? Are they equivalent? If so, is York’s
open to the same criticism, and which is to be preferred
computationally? The answers to these questions prove to
be yes, yes, no, and York, respectively.

That York and Orear address the same mathematical
question is evident by inspecting their equations for the
sum of the weighted squared residuals [Eq. (7) in both
cases—Eq. (1) or (16) in the present article]. They are
identical provided York assigns weights as the inverse
square of the measurement uncertainties; Orear’s effective
weights 1/57 [his Eq. (5) ] are identical to York’s weights
W, [Eq. (8) above] in this case. The crux of Lybanon’s
critique is Orear’s assertion that a standard least-squares
algorithm can still be used provided one utilizes his effec-
tive weights. Such algorithms usually rely on a matrix in-
version to generate the fit parameters. Presumably, one
would start off with an initial guess for the slope, compute
the effective weights, run the standard least-squares pro-
gram to get fit parameters that are used to update the
weights, and so on. The problem is that this procedure will
not yield exact least-squares parameters because the stan-
dard least-squares programs ignore the dependence of the
weights on the unknown fit parameters. Lybanon gives an
appealing simple example: If the uncertainties in all of the x
and y values are equal (but not necessarily the same for
each dimension ), then over one iteration the weights can be
factored out of the expression for .S and a least-squares al-
gorithm is left with a regression of y on x with equally
weighted points, the result being that no change will result
from “updating” the weights. This is precisely the case of
Example I in Sec. III, yet the “York-iterative” method
clearly gave evolving slopes and agreed with the root-find-
ing method. What makes it immune from Lybanon’s cri-
tique? The answer is that nowhere does it utilize a standard
least-squares algorithm. In the case of equal weights, it is
easy to show that the weights cannot be factored out of B
and y; either iteration or root finding remains sensitive to
changes in the weights caused by varying the slope in all
circumstances. Curiously, in the case of equal weights, the
least-squares cubic boils down to a true cubic equation that
could be solved directly.

In summary, the York and Orear formulations yield
identical exact results provided one weights in inverse-
square proportion to the uncertainties and minimizes
Orear’s expression for the effective variance S. York’s for-
mulation can be solved iteratively, by root finding, or by
minimizing his expression for S [Eq. (16) above]. How-
ever, there is a significant advantage to root finding: Mini-
mizing S is a two-dimensional problem (both slope and
intercept appear), whereas only m appears in Eq. (3).

B. Cameron Reed 645



York’s method also has the advantage of admitting differ-
ent weighing schemes should one so desire.

V. CONCLUDING REMARKS

In this article, I have pointed out some misleading state-
ments given by York in his general solution to the linear
least-squares problem. York’s solution is exact, equivalent
to that published by Orear, and free of the potential diffi-
culties pointed out by Lybanon. Finding the roots of
York’s “least-squares cubic” is simpler than minimizing
the effective variance. Finally, it is worthwhile reiterating
that standard least-squares algorithms cannot be modified
to yield correct (exact) results for the problem of linear
least-squares fits with uncertainties in both coordinates.
The irony in this is that the correct solution is almost as
simple.

The author will be pleased to make available a copy of his
root-finding algorithm to any interested parties.
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Some simple experimental studies using a passive cavity coupled to a
He-Ne laser cavity for practice in a quantum electronics laboratory
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Some quantum optics experiments about self-locking and mode-locking operation, optical
bistable operation, and low-absorption monitoring are described using a versatile, inexpensive
experimental setup. These experiments are easy to implement with a He—Ne laser coupled to a
passive cavity to which a few simple devices have been added.

L. INTRODUCTION

Progress in quantum electronics has been quite rapid in
the last 20 years. Therefore, besides classical optical experi-
ments, laboratory courses should introduce experiments
connected to the specific aspects of laser interaction with
matter, such as multiphoton absorption, harmonic genera-
tion, mode locking, optical bistability, etc.

Other articles in this Journal have already mentioned
some relatively simple laboratory experiments on optical
cavities and laser mode beats, '™ self-locking,' construction
of a dye laser® as well as on optogalvanic spectroscopy.®

The present article describes a versatile laboratory setup
that may be used for a great variety of quantum electronics
experiments. The main part of this setup consists of a He—
Ne laser coupled to a passive cavity. By adding a few inex-
pensive devices to this setup, different configurations may
be obtained to illustrate self-locking, mode locking, optical
bistable operation, and low-absorption coeflicient mea-
surement possibilities.
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I1. MULTIMODE LASER BEHAVIOR

Lasers normally oscillate simultaneously in a number of
resonator modes of different frequencies. Neglecting the
transverse mode effects, the mode frequency is determined
by the number of half-wavelengths of the radiation con-
tained in a cavity of length L.

If the modes are considered equispaced, the frequency
difference between adjacent modes is given by the relation

Af., = (1/2L)(¢/n), (D

where n is the effective refractive index within the cavity
and c is the light speed in vacuo. The relation (1) is ap-
proximate, being complicated by the fact that c/n is affect-
ed by dispersion. Since the velocity ¢/n depends on fre-
quency, the modes will not actually be equally spaced in
frequency.

Every mode satisfies the Maxwell wave equation. In the
free mode of operation, these equations are independent. If
a certain nonlinearity occurs, this will trigger the coupling
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