Grid Computing Questions and Posts

These are Posts and Questions associated with the product, Grid Computing


I have a procedure that builds an ideal from a specific set of polynomials and then calls the Groebner basis package to eliminate some of the variables.  Even though the procedure is running on a machine with 2 processors, 24 cores and 72 GB of ram, only one core has been used (and is always on a 100% usage).  Would the Grid Computing Toolbox be of some hope in this case?  If so,  how to insert the Grid commands so that Maple sends the calculations to the other cores (I find the document rather confusing)?   If I am talking non sense,  please let me know.

Many thanks





Hi everyone,

For my first question, I am looking for some help about the following. I have the opportunity to run a worksheet in parallel on a cluster of sixteen workstations, each one endowed with twelve CPUs, through the GRID Computing Toolbox. However, I have troubles concerning how to do that.

I join the worksheet at issue: The aim is to run large-scale numerical simulations of a dynamic system, depending on the values given to the initial conditions and to the parameters. The worksheet is organized in four execution groups:

  1. The required packages (combinat and LinearAlgebra).
  2. Calibration of the parameters and initial conditions.
  3. The system, which is embedded into a procedure called SIM.
  4. The activation of SIM, whose outputs are nine .mla files, each one being made of a real-number matrix.

The truth is, I do not clearly see how to modify the worksheet with some elements of the GRID package. Besides, the cluster operates under HTCondor so that running the worksheet requires beforehand the creation of a .sub file. This should be done in consistency with the aforesaid modification.

Any help is welcome, thanks a lot.

One of the most basic decisions a baseball manager has to make is how to arrange the batting order.  There are many heuristics and models for estimating the productivity of a given order.  My personal favourite is the use of simulation, but by far the most elegant solution from a mathematical perspective uses probability matrices and Markov chains.  An excellent treatment of this topic can be found in Dr. Joel S. Sokol's article,

Page 1 of 1