The attached worksheet shows a small selection of new and improved results in integration for Maple 2016. Note that integration is a vast topic, so there will always be more improvements that can be made, but be sure that we are working on them.

Maple2016_Integration.mw

A selection of new and improved integration results for Maple 2016

New answers in Maple 2016

 

 

Indefinite integrals:

 

int(sqrt(1+sqrt(z-1)), z);

(4/5)*(1+(z-1)^(1/2))^(5/2)-(4/3)*(1+(z-1)^(1/2))^(3/2)

(1.1)

int(arctan((-1+sec(x))^(1/2))*sin(x), x);

-arctan((-(1/sec(x)-1)*sec(x))^(1/2))/sec(x)+(1/2)*(-1+sec(x))^(1/2)/sec(x)+(1/2)*arctan((-1+sec(x))^(1/2))

(1.2)

int(((1+exp(I*x))^2+(1+exp(-I*x))^2)/(1-2*c*cos(x)+c^2), x);

-x-2*x/c-x/c^2+I*exp(I*x)/c-I*exp(-I*x)/c-I*c*ln(exp(I*x)-1/c)/(c-1)-I*ln(exp(I*x)-1/c)/(c-1)-I*ln(exp(I*x)-1/c)/(c*(c-1))-I*ln(exp(I*x)-1/c)/(c^2*(c-1))+I*c*ln(-c+exp(I*x))/(c-1)+I*ln(-c+exp(I*x))/(c-1)+I*ln(-c+exp(I*x))/(c*(c-1))+I*ln(-c+exp(I*x))/(c^2*(c-1))

(1.3)

int(x^4/arccos(x)^(3/2),x);

(1/4)*(-x^2+1)^(1/2)/arccos(x)^(1/2)-(1/4)*2^(1/2)*Pi^(1/2)*FresnelC(2^(1/2)*arccos(x)^(1/2)/Pi^(1/2))+(3/8)*sin(3*arccos(x))/arccos(x)^(1/2)-(3/8)*2^(1/2)*Pi^(1/2)*3^(1/2)*FresnelC(2^(1/2)*3^(1/2)*arccos(x)^(1/2)/Pi^(1/2))+(1/8)*sin(5*arccos(x))/arccos(x)^(1/2)-(1/8)*2^(1/2)*Pi^(1/2)*5^(1/2)*FresnelC(2^(1/2)*5^(1/2)*arccos(x)^(1/2)/Pi^(1/2))

(1.4)

 

Definite integrals:

int(arcsin(sin(z)), z=0..1);

1/2

(1.5)

int(sqrt(1 - sqrt(1+z)), z=0..1);

((4/5)*I)*(2^(1/2)-1)^(3/2)*2^(1/2)+((8/15)*I)*(2^(1/2)-1)^(3/2)

(1.6)

int(z/(exp(2*z)+4*exp(z)+10),z = 0 .. infinity);

(1/20)*dilog((I*6^(1/2)-3)/(-2+I*6^(1/2)))-((1/60)*I)*6^(1/2)*dilog((I*6^(1/2)-3)/(-2+I*6^(1/2)))+(1/20)*dilog((I*6^(1/2)+3)/(2+I*6^(1/2)))+((1/60)*I)*6^(1/2)*dilog((I*6^(1/2)+3)/(2+I*6^(1/2)))+((1/120)*I)*6^(1/2)*ln(2+I*6^(1/2))^2-((1/120)*I)*6^(1/2)*ln(2-I*6^(1/2))^2+(1/40)*ln(2+I*6^(1/2))^2+(1/40)*ln(2-I*6^(1/2))^2+(1/60)*Pi^2

(1.7)

simplify(int(sinh(a*abs(x-y)), y=0..c, 'method'='FTOC'));

(1/2)*(piecewise(x < 0, 0, 0 <= x, 2*exp(-a*x))+piecewise(x < 0, 0, 0 <= x, -4)+2*piecewise(c <= x, -cosh(a*(-x+c))/a, x < c, (cosh(a*(-x+c))-2)/a)*a-exp(-a*x)+piecewise(x < 0, 0, 0 <= x, 2*exp(a*x))+4-exp(a*x))/a

(1.8)

int(ln(x+y)/(x^2+y), [x=0..infinity, y=0..infinity]);

infinity

(1.9)


Definite integrals with assumptions on the parameters:

int(x^(-ln(x)),x=0..b) assuming b > 0;

(1/2)*erf(ln(b)-1/2)*Pi^(1/2)*exp(1/4)+(1/2)*Pi^(1/2)*exp(1/4)

(1.10)

int(exp(-z)*exp(-I*n*z)*cos(n*z),z = -infinity .. infinity) assuming n::integer;

undefined

(1.11)


Integral of symbolic integer powers of sin(x) or cos(x):

int(sin(x)^n,x) assuming n::integer;

` piecewise`(0 < n, -(Sum((Product(1+1/(n-2*j), j = 1 .. i))*sin(x)^(n-2*i-1), i = 0 .. ceil((1/2)*n)-1))*cos(x)/n+(Product(1-1/(n-2*j), j = 0 .. ceil((1/2)*n)-1))*x, n < 0, (Sum((Product(1-1/(n+2*j+1), j = 0 .. i))*sin(x)^(n+2*i+1), i = 0 .. -ceil((1/2)*n)-1))*cos(x)/n+(Product(1+1/(n+2*j-1), j = 1 .. -ceil((1/2)*n)))*ln(csc(x)-cot(x)), x)

(1.12)

int(cos(x)^n,x) assuming n::negint;

-(Sum((Product(1-1/(n+2*j+1), j = 0 .. i))*cos(x)^(n+2*i+1), i = 0 .. -ceil((1/2)*n)-1))*sin(x)/n+(Product(1+1/(n+2*j-1), j = 1 .. -ceil((1/2)*n)))*ln(sec(x)+tan(x))

(1.13)

int(cos(x)^n,x) assuming n::posint;

(Sum((Product(1+1/(n-2*j), j = 1 .. i))*cos(x)^(n-2*i-1), i = 0 .. ceil((1/2)*n)-1))*sin(x)/n+(Product(1-1/(n-2*j), j = 0 .. ceil((1/2)*n)-1))*x

(1.14)

Improved answers in Maple 2016

 

int(sqrt(1+sqrt(x)), x);

(4/5)*(1+x^(1/2))^(5/2)-(4/3)*(1+x^(1/2))^(3/2)

(2.1)

int(sqrt(1+sqrt(1+z)), z= 0..1);

-(8/15)*2^(1/2)-(8/15)*(1+2^(1/2))^(3/2)+(4/5)*(1+2^(1/2))^(3/2)*2^(1/2)

(2.2)

int(signum(z^k)*exp(-z^2), z=-infinity..infinity) assuming k::real;

(1/2)*(-1)^k*Pi^(1/2)+(1/2)*Pi^(1/2)

(2.3)

int(2*abs(sin(x*p)*sin(x)), x = 0 .. Pi) assuming p> 1;

-2*(sin(Pi*p)*signum(sin(Pi*p))*cos(Pi/p)-p*sin(Pi/p)*cos(Pi*(floor(p)+1)/p)+sin(Pi*(floor(p)+1)/p)*cos(Pi/p)*p-sin(Pi*p)*signum(sin(Pi*p))-sin(Pi*(floor(p)+1)/p)*p+sin(Pi/p)*p)/((cos(Pi/p)-1)*(p^2-1))

(2.4)

int(1/(x^4-x+1), x = 0 .. infinity);

-(sum(ln(-_R)/(4*_R^3-1), _R = RootOf(_Z^4-_Z+1)))

(2.5)


In Maple 2016, this multiple integral is computed over 3 times faster than it was in Maple 2015.

int(exp(abs(x1-x2))*exp(abs(x1-x3))*exp(abs(x3-x4))*exp(abs(x4-x2)), [x1=0..R, x2=0..R, x3=0..R, x4=0..R], AllSolutions) assuming R>0;

(1/8)*exp(4*R)-29/8+(7/2)*exp(2*R)-5*R*exp(2*R)+2*exp(2*R)*R^2-(5/2)*R

(2.6)

Austin Roche
Mathematical Software, Maplesoft

Please Wait...