MaplePrimes Announcement

We have just released updates to Maple and MapleSim.

Maple 2019.2 includes corrections and improvements to a variety of areas in the product, including a new “Go to page ____” option in print preview (that am personally quite pleased about), sections are expanded by default when printing or exporting, a fix to a problem using non-executable math with text in document mode that sometimes made it impossible to advance to a new line using Enter, improvements to VectorCalculus, select, abs and other math functions, support for macOS Catalina, and more.  We recommend that all Maple 2019 users install these updates.

This update is available through Tools>Check for Updates in Maple, and is also available from our website on the Maple 2019.2 download page, where you can also find more details.

For MapleSim users, the MapleSim 2019.2 family of products includes enhancements in the areas of model development and toolchain connectivity, including substantial enhancements to the MapleSim CAD toolbox.   For more details and download instructions, visit the MapleSim 2019.2 download page.

Featured Post


 

restart: with(LinearAlgebra):

# Motion equation (  Vibration of a cracked composite beam using general solution)  Edited by Adjal Yassine #

####################################################################

Motion equation of flexural  vibration in normalized form 

EI*W^(iv)-m*omega^2*W=0;

EI*W^iv-m*omega^2*W = 0

(1)

 

The general solution form of bending vibration equation

W1:=A[1]*cosh(mu*x)+A[2]*sinh(mu*x)+A[3]*cos(mu*x)+A[4]*sin(mu*x);

A[1]*cosh(mu*x)+A[2]*sinh(mu*x)+A[3]*cos(mu*x)+A[4]*sin(mu*x)

(2)

where

E:=2682e6;L:=0.18;h:=0.004;b:=0.02;rho:=2600;area=b*h;m:=rho*h*b;II:=(h*b^3)/12:

0.2682e10

 

.18

 

0.4e-2

 

0.2e-1

 

2600

 

area = 0.8e-4

 

.20800

(3)

mu:=((m*omega^2*L^4/EI)^(1/4)):

 

 Expression of cross-sectional rotation , the bending moment shear  force and torsional moment  are given as follows respectively

theta1 := (1/L)*(A[1]*mu*sinh(mu*x)+A[2]*mu*cosh(mu*x)-A[3]*mu*sin(mu*x)+A[4]*mu*cos(mu*x));

(A[1]*mu*sinh(mu*x)+A[2]*mu*cosh(mu*x)-A[3]*mu*sin(mu*x)+A[4]*mu*cos(mu*x))/L

(4)

M1:= (EI/L^2)*(A[1]*mu^2*cosh(mu*x)+A[2]*mu^2*sinh(mu*x)-A[3]*mu^2*cos(mu*x)-A[4]*mu^2*sin(mu*x));

EI*(A[1]*mu^2*cosh(mu*x)+A[2]*mu^2*sinh(mu*x)-A[3]*mu^2*cos(mu*x)-A[4]*mu^2*sin(mu*x))/L^2

(5)

S1:= (-EI/L^3)*(A[1]*mu^3*sinh(mu*x)+A[2]*mu^3*cosh(mu*x)+A[3]*mu^3*sin(mu*x)-A[4]*mu^3*cos(mu*x));

-EI*(A[1]*mu^3*sinh(mu*x)+A[2]*mu^3*cosh(mu*x)+A[3]*mu^3*sin(mu*x)-A[4]*mu^3*cos(mu*x))/L^3

(6)

 

W2:=A[5]*cosh(mu*x)+A[6]*sinh(mu*x)+A[7]*cos(mu*x)+A[8]*sin(mu*x);

A[5]*cosh(mu*x)+A[6]*sinh(mu*x)+A[7]*cos(mu*x)+A[8]*sin(mu*x)

(7)

 

theta2:= (1/L)*(A[5]*mu*sinh(mu*x)+A[6]*mu*cosh(mu*x)-A[7]*mu*sin(mu*x)+A[8]*mu*cos(mu*x));

(A[5]*mu*sinh(mu*x)+A[6]*mu*cosh(mu*x)-A[7]*mu*sin(mu*x)+A[8]*mu*cos(mu*x))/L

(8)

M2:= (EI/L^2)*(A[5]*mu^2*cosh(mu*x)+A[6]*mu^2*sinh(mu*x)-A[7]*mu^2*cos(mu*x)-A[8]*mu^2*sin(mu*x));

EI*(A[5]*mu^2*cosh(mu*x)+A[6]*mu^2*sinh(mu*x)-A[7]*mu^2*cos(mu*x)-A[8]*mu^2*sin(mu*x))/L^2

(9)

S2:= -(EI/L^3)*(A[5]*mu^3*sinh(mu*x)+A[6]*mu^3*cosh(mu*x)+A[7]*mu^3*sin(mu*x)-A[8]*mu^3*cos(mu*x));

-EI*(A[5]*mu^3*sinh(mu*x)+A[6]*mu^3*cosh(mu*x)+A[7]*mu^3*sin(mu*x)-A[8]*mu^3*cos(mu*x))/L^3

(10)

 

The boundary conditions at fixed end W1(0)=Theta(0)=0

X1:=eval(subs(x=0,W1));

A[1]+A[3]

(11)

X2:=eval(subs(x=0,theta1));

(mu*A[2]+mu*A[4])/L

(12)

X2:=collect(X2,mu)*(L/mu);

A[2]+A[4]

(13)

 

The boundary condtions at free end M2(1)=S2(1)=0

X3:=eval(subs(x=1,M2));

EI*(A[5]*mu^2*cosh(mu)+A[6]*mu^2*sinh(mu)-A[7]*mu^2*cos(mu)-A[8]*mu^2*sin(mu))/L^2

(14)

X3:=collect(X3,mu)*(L^2/mu^2/EI);

cosh(mu)*A[5]+sinh(mu)*A[6]-cos(mu)*A[7]-sin(mu)*A[8]

(15)

X4:=eval(subs(x=1,S2));

-EI*(A[5]*mu^3*sinh(mu)+A[6]*mu^3*cosh(mu)+A[7]*mu^3*sin(mu)-A[8]*mu^3*cos(mu))/L^3

(16)

X4:=collect(X4,mu);

-EI*(cosh(mu)*A[6]+sinh(mu)*A[5]-cos(mu)*A[8]+sin(mu)*A[7])*mu^3/L^3

(17)

X4:=collect(X4,EI)*(L^3/mu^3/EI);

-cosh(mu)*A[6]-sinh(mu)*A[5]+cos(mu)*A[8]-sin(mu)*A[7]

(18)

 

The additional boundary conditions at crack location

X5:=combine(M1-M2);

(EI*cosh(mu*x)*mu^2*A[1]-EI*cosh(mu*x)*mu^2*A[5]+EI*sinh(mu*x)*mu^2*A[2]-EI*sinh(mu*x)*mu^2*A[6]-EI*cos(mu*x)*mu^2*A[3]+EI*cos(mu*x)*mu^2*A[7]-EI*sin(mu*x)*mu^2*A[4]+EI*sin(mu*x)*mu^2*A[8])/L^2

(19)

X5:=collect(X5,mu);

(EI*cosh(mu*x)*A[1]-EI*cosh(mu*x)*A[5]+EI*sinh(mu*x)*A[2]-EI*sinh(mu*x)*A[6]-cos(mu*x)*EI*A[3]+A[7]*cos(mu*x)*EI-A[4]*sin(mu*x)*EI+A[8]*sin(mu*x)*EI)*mu^2/L^2

(20)

X5:=collect(X5,EI)*(L^2/mu^2/EI);

A[1]*cosh(mu*x)-A[5]*cosh(mu*x)+A[2]*sinh(mu*x)-A[6]*sinh(mu*x)-A[3]*cos(mu*x)+A[7]*cos(mu*x)-A[4]*sin(mu*x)+A[8]*sin(mu*x)

(21)

X6:=combine(S1-S2);

(-EI*cosh(mu*x)*mu^3*A[2]+EI*cosh(mu*x)*mu^3*A[6]-EI*sinh(mu*x)*mu^3*A[1]+EI*sinh(mu*x)*mu^3*A[5]+EI*cos(mu*x)*mu^3*A[4]-EI*cos(mu*x)*mu^3*A[8]-EI*sin(mu*x)*mu^3*A[3]+EI*sin(mu*x)*mu^3*A[7])/L^3

(22)

X6:=collect(X6,mu);

(-EI*cosh(mu*x)*A[2]+EI*cosh(mu*x)*A[6]-EI*sinh(mu*x)*A[1]+EI*A[5]*sinh(mu*x)+cos(mu*x)*A[4]*EI-cos(mu*x)*A[8]*EI-sin(mu*x)*EI*A[3]+sin(mu*x)*A[7]*EI)*mu^3/L^3

(23)

X6:=collect(X6,EI)*(L^3/mu^3/EI);

-cosh(mu*x)*A[2]+cosh(mu*x)*A[6]-sinh(mu*x)*A[1]+sinh(mu*x)*A[5]+cos(mu*x)*A[4]-cos(mu*x)*A[8]-sin(mu*x)*A[3]+sin(mu*x)*A[7]

(24)

 

X7:=combine(W2-(W1+c8*S1));

(EI*cosh(mu*x)*c8*mu^3*A[2]+EI*sinh(mu*x)*c8*mu^3*A[1]-EI*cos(mu*x)*c8*mu^3*A[4]+EI*sin(mu*x)*c8*mu^3*A[3]-cosh(mu*x)*A[1]*L^3+cosh(mu*x)*A[5]*L^3-sinh(mu*x)*A[2]*L^3+sinh(mu*x)*A[6]*L^3-cos(mu*x)*A[3]*L^3+cos(mu*x)*A[7]*L^3-sin(mu*x)*A[4]*L^3+sin(mu*x)*A[8]*L^3)/L^3

(25)

X8:=combine (theta2-(theta1+c44*M1));

(-EI*cosh(mu*x)*c44*mu^2*A[1]-EI*sinh(mu*x)*c44*mu^2*A[2]+EI*cos(mu*x)*c44*mu^2*A[3]+EI*sin(mu*x)*c44*mu^2*A[4]-L*cosh(mu*x)*mu*A[2]+L*cosh(mu*x)*mu*A[6]-L*sinh(mu*x)*mu*A[1]+L*sinh(mu*x)*mu*A[5]-L*cos(mu*x)*mu*A[4]+L*cos(mu*x)*mu*A[8]+L*sin(mu*x)*mu*A[3]-L*sin(mu*x)*mu*A[7])/L^2

(26)

 

The characteristic matrix function of frequency

FD8:=subs(A[1]=1,A[3]=0,X1);FD12:=subs(A[1]=0,A[3]=0,X1);FD13:=subs(A[1]=0,A[3]=1,X1);FD14:=subs(A[1]=0,A[3]=0,X1);FD15:=subs(A[1]=0,A[3]=0,X1);FD16:=subs(A[1]=0,A[3]=0,X1);FD17:=subs(A[1]=0,A[3]=0,X1);FD18:=subs(A[1]=0,A[3]=0,X1);

1

 

0

 

1

 

0

 

0

 

0

 

0

 

0

(27)

FD21:=subs(A[2]=0,A[4]=0,X2);FD22:=subs(A[2]=1,A[4]=0,X2);FD23:=subs(A[2]=0,A[4]=0,X2);FD24:=subs(A[2]=0,A[4]=1,X2);FD25:=subs(A[2]=0,A[4]=0,X2);FD26:=subs(A[2]=0,A[4]=0,X2);FD27:=subs(A[2]=0,A[4]=0,X2);FD28:=subs(A[2]=0,A[4]=0,X2);

0

 

1

 

0

 

1

 

0

 

0

 

0

 

0

(28)

 

FD31:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X3);FD32:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X3);FD33:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X3);FD34:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X3);FD35:=subs(A[5]=1,A[6]=0,A[7]=0,A[8]=0,X3);;FD36:=subs(A[5]=0,A[6]=1,A[7]=0,A[8]=0,X3);FD37:=subs(A[5]=0,A[6]=0,A[7]=1,A[8]=0,X3);FD38:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=1,X3);

0

 

0

 

0

 

0

 

cosh(mu)

 

sinh(mu)

 

-cos(mu)

 

-sin(mu)

(29)

FD41:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X4);FD42:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X4);FD43:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X4);FD44:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X4);FD45:=subs(A[5]=1,A[6]=0,A[7]=0,A[8]=0,X4);FD46:=subs(A[5]=0,A[6]=1,A[7]=0,A[8]=0,X4);FD47:=subs(A[5]=0,A[6]=0,A[7]=1,A[8]=0,X4);FD48:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=1,X4);

0

 

0

 

0

 

0

 

-sinh(mu)

 

-cosh(mu)

 

-sin(mu)

 

cos(mu)

(30)

 

FD51:=subs(A[1]=1,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X5);FD52:=subs(A[1]=0,A[2]=1,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X5);FD53:=subs(A[1]=0,A[2]=0,A[3]=1,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X5);FD54:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=1,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X5);FD55:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=1,A[6]=0,A[7]=0,A[8]=0,X5);FD56:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=1,A[7]=0,A[8]=0,X5);FD57:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=1,A[8]=0,X5);FD58:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=1,X5);

cosh(mu*x)

 

sinh(mu*x)

 

-cos(mu*x)

 

-sin(mu*x)

 

-cosh(mu*x)

 

-sinh(mu*x)

 

cos(mu*x)

 

sin(mu*x)

(31)

FD61:=subs(A[1]=1,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X6);FD62:=subs(A[1]=0,A[2]=1,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X6);FD63:=subs(A[1]=0,A[2]=0,A[3]=1,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X6);FD64:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=1,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X6);FD65:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=1,A[6]=0,A[7]=0,A[8]=0,X6);FD66:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=1,A[7]=0,A[8]=0,X6);FD67:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=1,A[8]=0,X6);FD68:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=1,X6);

-sinh(mu*x)

 

-cosh(mu*x)

 

-sin(mu*x)

 

cos(mu*x)

 

sinh(mu*x)

 

cosh(mu*x)

 

sin(mu*x)

 

-cos(mu*x)

(32)

 

FD71:=subs(A[1]=1,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X7);FD72:=subs(A[1]=0,A[2]=1,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X7);FD73:=subs(A[1]=0,A[2]=0,A[3]=1,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X7);FD74:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=1,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X7);FD75:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=1,A[6]=0,A[7]=0,A[8]=0,X7);FD76:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=1,A[7]=0,A[8]=0,X7);FD77:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=1,A[8]=0,X7);FD78:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=1,X7);

(EI*sinh(mu*x)*c8*mu^3-cosh(mu*x)*L^3)/L^3

 

(EI*cosh(mu*x)*c8*mu^3-sinh(mu*x)*L^3)/L^3

 

(EI*sin(mu*x)*c8*mu^3-L^3*cos(mu*x))/L^3

 

(-EI*cos(mu*x)*c8*mu^3-sin(mu*x)*L^3)/L^3

 

cosh(mu*x)

 

sinh(mu*x)

 

cos(mu*x)

 

sin(mu*x)

(33)

FD81:=subs(A[1]=1,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X8);FD82:=subs(A[1]=0,A[2]=1,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X8);FD83:=subs(A[1]=0,A[2]=0,A[3]=1,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X8);FD84:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=1,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X8);FD85:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=1,A[6]=0,A[7]=0,A[8]=0,X8);FD86:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=1,A[7]=0,A[8]=0,X8);FD87:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=1,A[8]=0,X8);FD88:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=1,X8);

(-EI*cosh(mu*x)*c44*mu^2-L*sinh(mu*x)*mu)/L^2

 

(-EI*sinh(mu*x)*c44*mu^2-L*cosh(mu*x)*mu)/L^2

 

(EI*cos(mu*x)*c44*mu^2+L*sin(mu*x)*mu)/L^2

 

(EI*sin(mu*x)*c44*mu^2-L*cos(mu*x)*mu)/L^2

 

sinh(mu*x)*mu/L

 

cosh(mu*x)*mu/L

 

-sin(mu*x)*mu/L

 

cos(mu*x)*mu/L

(34)

 

MM:=matrix(8,8,[[FD11,FD12,FD13,FD14,FD15,FD16,FD17,FD18],[FD21,FD22,FD23,FD24,FD25,FD26,FD27,FD28],[FD31,FD32,FD33,FD34,FD35,FD36,FD37,FD38],[FD41,FD42,FD43,FD44,FD45,FD46,FD47,FD48],[FD51,FD52,FD53,FD54,FD55,FD56,FD57,FD58],[FD61,FD62,FD63,FD64,FD65,FD66,FD67,FD68],[FD71,FD72,FD73,FD74,FD75,FD76,FD77,FD78],[FD81,FD82,FD83,FD84,FD85,FD86,FD87,FD88]]);

MM := Matrix(8, 8, {(1, 1) = FD11, (1, 2) = 0, (1, 3) = 1, (1, 4) = 0, (1, 5) = 0, (1, 6) = 0, (1, 7) = 0, (1, 8) = 0, (2, 1) = 0, (2, 2) = 1, (2, 3) = 0, (2, 4) = 1, (2, 5) = 0, (2, 6) = 0, (2, 7) = 0, (2, 8) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 0, (3, 4) = 0, (3, 5) = cosh(mu), (3, 6) = sinh(mu), (3, 7) = -cos(mu), (3, 8) = -sin(mu), (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = 0, (4, 5) = -sinh(mu), (4, 6) = -cosh(mu), (4, 7) = -sin(mu), (4, 8) = cos(mu), (5, 1) = cosh(mu*x), (5, 2) = sinh(mu*x), (5, 3) = -cos(mu*x), (5, 4) = -sin(mu*x), (5, 5) = -cosh(mu*x), (5, 6) = -sinh(mu*x), (5, 7) = cos(mu*x), (5, 8) = sin(mu*x), (6, 1) = -sinh(mu*x), (6, 2) = -cosh(mu*x), (6, 3) = -sin(mu*x), (6, 4) = cos(mu*x), (6, 5) = sinh(mu*x), (6, 6) = cosh(mu*x), (6, 7) = sin(mu*x), (6, 8) = -cos(mu*x), (7, 1) = (EI*sinh(mu*x)*c8*mu^3-cosh(mu*x)*L^3)/L^3, (7, 2) = (EI*cosh(mu*x)*c8*mu^3-sinh(mu*x)*L^3)/L^3, (7, 3) = (EI*sin(mu*x)*c8*mu^3-L^3*cos(mu*x))/L^3, (7, 4) = (-EI*cos(mu*x)*c8*mu^3-sin(mu*x)*L^3)/L^3, (7, 5) = cosh(mu*x), (7, 6) = sinh(mu*x), (7, 7) = cos(mu*x), (7, 8) = sin(mu*x), (8, 1) = (-EI*cosh(mu*x)*c44*mu^2-L*sinh(mu*x)*mu)/L^2, (8, 2) = (-EI*sinh(mu*x)*c44*mu^2-L*cosh(mu*x)*mu)/L^2, (8, 3) = (EI*cos(mu*x)*c44*mu^2+L*sin(mu*x)*mu)/L^2, (8, 4) = (EI*sin(mu*x)*c44*mu^2-L*cos(mu*x)*mu)/L^2, (8, 5) = sinh(mu*x)*mu/L, (8, 6) = cosh(mu*x)*mu/L, (8, 7) = -sin(mu*x)*mu/L, (8, 8) = cos(mu*x)*mu/L})

(35)

Program end

 

NULL

 

``


 

Download Vibration_of_a_cracked_composite_beam.mw
 

restart: with(LinearAlgebra):

# Motion equation (  Vibration of a cracked composite beam using general solution)  Edited by Adjal Yassine #

####################################################################

Motion equation of flexural  vibration in normalized form 

EI*W^(iv)-m*omega^2*W=0;

EI*W^iv-m*omega^2*W = 0

(1)

 

The general solution form of bending vibration equation

W1:=A[1]*cosh(mu*x)+A[2]*sinh(mu*x)+A[3]*cos(mu*x)+A[4]*sin(mu*x);

A[1]*cosh(mu*x)+A[2]*sinh(mu*x)+A[3]*cos(mu*x)+A[4]*sin(mu*x)

(2)

where

E:=2682e6;L:=0.18;h:=0.004;b:=0.02;rho:=2600;area=b*h;m:=rho*h*b;II:=(h*b^3)/12:

0.2682e10

 

.18

 

0.4e-2

 

0.2e-1

 

2600

 

area = 0.8e-4

 

.20800

(3)

mu:=((m*omega^2*L^4/EI)^(1/4)):

 

 Expression of cross-sectional rotation , the bending moment shear  force and torsional moment  are given as follows respectively

theta1 := (1/L)*(A[1]*mu*sinh(mu*x)+A[2]*mu*cosh(mu*x)-A[3]*mu*sin(mu*x)+A[4]*mu*cos(mu*x));

(A[1]*mu*sinh(mu*x)+A[2]*mu*cosh(mu*x)-A[3]*mu*sin(mu*x)+A[4]*mu*cos(mu*x))/L

(4)

M1:= (EI/L^2)*(A[1]*mu^2*cosh(mu*x)+A[2]*mu^2*sinh(mu*x)-A[3]*mu^2*cos(mu*x)-A[4]*mu^2*sin(mu*x));

EI*(A[1]*mu^2*cosh(mu*x)+A[2]*mu^2*sinh(mu*x)-A[3]*mu^2*cos(mu*x)-A[4]*mu^2*sin(mu*x))/L^2

(5)

S1:= (-EI/L^3)*(A[1]*mu^3*sinh(mu*x)+A[2]*mu^3*cosh(mu*x)+A[3]*mu^3*sin(mu*x)-A[4]*mu^3*cos(mu*x));

-EI*(A[1]*mu^3*sinh(mu*x)+A[2]*mu^3*cosh(mu*x)+A[3]*mu^3*sin(mu*x)-A[4]*mu^3*cos(mu*x))/L^3

(6)

 

W2:=A[5]*cosh(mu*x)+A[6]*sinh(mu*x)+A[7]*cos(mu*x)+A[8]*sin(mu*x);

A[5]*cosh(mu*x)+A[6]*sinh(mu*x)+A[7]*cos(mu*x)+A[8]*sin(mu*x)

(7)

 

theta2:= (1/L)*(A[5]*mu*sinh(mu*x)+A[6]*mu*cosh(mu*x)-A[7]*mu*sin(mu*x)+A[8]*mu*cos(mu*x));

(A[5]*mu*sinh(mu*x)+A[6]*mu*cosh(mu*x)-A[7]*mu*sin(mu*x)+A[8]*mu*cos(mu*x))/L

(8)

M2:= (EI/L^2)*(A[5]*mu^2*cosh(mu*x)+A[6]*mu^2*sinh(mu*x)-A[7]*mu^2*cos(mu*x)-A[8]*mu^2*sin(mu*x));

EI*(A[5]*mu^2*cosh(mu*x)+A[6]*mu^2*sinh(mu*x)-A[7]*mu^2*cos(mu*x)-A[8]*mu^2*sin(mu*x))/L^2

(9)

S2:= -(EI/L^3)*(A[5]*mu^3*sinh(mu*x)+A[6]*mu^3*cosh(mu*x)+A[7]*mu^3*sin(mu*x)-A[8]*mu^3*cos(mu*x));

-EI*(A[5]*mu^3*sinh(mu*x)+A[6]*mu^3*cosh(mu*x)+A[7]*mu^3*sin(mu*x)-A[8]*mu^3*cos(mu*x))/L^3

(10)

 

The boundary conditions at fixed end W1(0)=Theta(0)=0

X1:=eval(subs(x=0,W1));

A[1]+A[3]

(11)

X2:=eval(subs(x=0,theta1));

(mu*A[2]+mu*A[4])/L

(12)

X2:=collect(X2,mu)*(L/mu);

A[2]+A[4]

(13)

 

The boundary condtions at free end M2(1)=S2(1)=0

X3:=eval(subs(x=1,M2));

EI*(A[5]*mu^2*cosh(mu)+A[6]*mu^2*sinh(mu)-A[7]*mu^2*cos(mu)-A[8]*mu^2*sin(mu))/L^2

(14)

X3:=collect(X3,mu)*(L^2/mu^2/EI);

cosh(mu)*A[5]+sinh(mu)*A[6]-cos(mu)*A[7]-sin(mu)*A[8]

(15)

X4:=eval(subs(x=1,S2));

-EI*(A[5]*mu^3*sinh(mu)+A[6]*mu^3*cosh(mu)+A[7]*mu^3*sin(mu)-A[8]*mu^3*cos(mu))/L^3

(16)

X4:=collect(X4,mu);

-EI*(cosh(mu)*A[6]+sinh(mu)*A[5]-cos(mu)*A[8]+sin(mu)*A[7])*mu^3/L^3

(17)

X4:=collect(X4,EI)*(L^3/mu^3/EI);

-cosh(mu)*A[6]-sinh(mu)*A[5]+cos(mu)*A[8]-sin(mu)*A[7]

(18)

 

The additional boundary conditions at crack location

X5:=combine(M1-M2);

(EI*cosh(mu*x)*mu^2*A[1]-EI*cosh(mu*x)*mu^2*A[5]+EI*sinh(mu*x)*mu^2*A[2]-EI*sinh(mu*x)*mu^2*A[6]-EI*cos(mu*x)*mu^2*A[3]+EI*cos(mu*x)*mu^2*A[7]-EI*sin(mu*x)*mu^2*A[4]+EI*sin(mu*x)*mu^2*A[8])/L^2

(19)

X5:=collect(X5,mu);

(EI*cosh(mu*x)*A[1]-EI*cosh(mu*x)*A[5]+EI*sinh(mu*x)*A[2]-EI*sinh(mu*x)*A[6]-cos(mu*x)*EI*A[3]+A[7]*cos(mu*x)*EI-A[4]*sin(mu*x)*EI+A[8]*sin(mu*x)*EI)*mu^2/L^2

(20)

X5:=collect(X5,EI)*(L^2/mu^2/EI);

A[1]*cosh(mu*x)-A[5]*cosh(mu*x)+A[2]*sinh(mu*x)-A[6]*sinh(mu*x)-A[3]*cos(mu*x)+A[7]*cos(mu*x)-A[4]*sin(mu*x)+A[8]*sin(mu*x)

(21)

X6:=combine(S1-S2);

(-EI*cosh(mu*x)*mu^3*A[2]+EI*cosh(mu*x)*mu^3*A[6]-EI*sinh(mu*x)*mu^3*A[1]+EI*sinh(mu*x)*mu^3*A[5]+EI*cos(mu*x)*mu^3*A[4]-EI*cos(mu*x)*mu^3*A[8]-EI*sin(mu*x)*mu^3*A[3]+EI*sin(mu*x)*mu^3*A[7])/L^3

(22)

X6:=collect(X6,mu);

(-EI*cosh(mu*x)*A[2]+EI*cosh(mu*x)*A[6]-EI*sinh(mu*x)*A[1]+EI*A[5]*sinh(mu*x)+cos(mu*x)*A[4]*EI-cos(mu*x)*A[8]*EI-sin(mu*x)*EI*A[3]+sin(mu*x)*A[7]*EI)*mu^3/L^3

(23)

X6:=collect(X6,EI)*(L^3/mu^3/EI);

-cosh(mu*x)*A[2]+cosh(mu*x)*A[6]-sinh(mu*x)*A[1]+sinh(mu*x)*A[5]+cos(mu*x)*A[4]-cos(mu*x)*A[8]-sin(mu*x)*A[3]+sin(mu*x)*A[7]

(24)

 

X7:=combine(W2-(W1+c8*S1));

(EI*cosh(mu*x)*c8*mu^3*A[2]+EI*sinh(mu*x)*c8*mu^3*A[1]-EI*cos(mu*x)*c8*mu^3*A[4]+EI*sin(mu*x)*c8*mu^3*A[3]-cosh(mu*x)*A[1]*L^3+cosh(mu*x)*A[5]*L^3-sinh(mu*x)*A[2]*L^3+sinh(mu*x)*A[6]*L^3-cos(mu*x)*A[3]*L^3+cos(mu*x)*A[7]*L^3-sin(mu*x)*A[4]*L^3+sin(mu*x)*A[8]*L^3)/L^3

(25)

X8:=combine (theta2-(theta1+c44*M1));

(-EI*cosh(mu*x)*c44*mu^2*A[1]-EI*sinh(mu*x)*c44*mu^2*A[2]+EI*cos(mu*x)*c44*mu^2*A[3]+EI*sin(mu*x)*c44*mu^2*A[4]-L*cosh(mu*x)*mu*A[2]+L*cosh(mu*x)*mu*A[6]-L*sinh(mu*x)*mu*A[1]+L*sinh(mu*x)*mu*A[5]-L*cos(mu*x)*mu*A[4]+L*cos(mu*x)*mu*A[8]+L*sin(mu*x)*mu*A[3]-L*sin(mu*x)*mu*A[7])/L^2

(26)

 

The characteristic matrix function of frequency

FD8:=subs(A[1]=1,A[3]=0,X1);FD12:=subs(A[1]=0,A[3]=0,X1);FD13:=subs(A[1]=0,A[3]=1,X1);FD14:=subs(A[1]=0,A[3]=0,X1);FD15:=subs(A[1]=0,A[3]=0,X1);FD16:=subs(A[1]=0,A[3]=0,X1);FD17:=subs(A[1]=0,A[3]=0,X1);FD18:=subs(A[1]=0,A[3]=0,X1);

1

 

0

 

1

 

0

 

0

 

0

 

0

 

0

(27)

FD21:=subs(A[2]=0,A[4]=0,X2);FD22:=subs(A[2]=1,A[4]=0,X2);FD23:=subs(A[2]=0,A[4]=0,X2);FD24:=subs(A[2]=0,A[4]=1,X2);FD25:=subs(A[2]=0,A[4]=0,X2);FD26:=subs(A[2]=0,A[4]=0,X2);FD27:=subs(A[2]=0,A[4]=0,X2);FD28:=subs(A[2]=0,A[4]=0,X2);

0

 

1

 

0

 

1

 

0

 

0

 

0

 

0

(28)

 

FD31:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X3);FD32:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X3);FD33:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X3);FD34:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X3);FD35:=subs(A[5]=1,A[6]=0,A[7]=0,A[8]=0,X3);;FD36:=subs(A[5]=0,A[6]=1,A[7]=0,A[8]=0,X3);FD37:=subs(A[5]=0,A[6]=0,A[7]=1,A[8]=0,X3);FD38:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=1,X3);

0

 

0

 

0

 

0

 

cosh(mu)

 

sinh(mu)

 

-cos(mu)

 

-sin(mu)

(29)

FD41:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X4);FD42:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X4);FD43:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X4);FD44:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X4);FD45:=subs(A[5]=1,A[6]=0,A[7]=0,A[8]=0,X4);FD46:=subs(A[5]=0,A[6]=1,A[7]=0,A[8]=0,X4);FD47:=subs(A[5]=0,A[6]=0,A[7]=1,A[8]=0,X4);FD48:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=1,X4);

0

 

0

 

0

 

0

 

-sinh(mu)

 

-cosh(mu)

 

-sin(mu)

 

cos(mu)

(30)

 

FD51:=subs(A[1]=1,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X5);FD52:=subs(A[1]=0,A[2]=1,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X5);FD53:=subs(A[1]=0,A[2]=0,A[3]=1,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X5);FD54:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=1,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X5);FD55:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=1,A[6]=0,A[7]=0,A[8]=0,X5);FD56:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=1,A[7]=0,A[8]=0,X5);FD57:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=1,A[8]=0,X5);FD58:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=1,X5);

cosh(mu*x)

 

sinh(mu*x)

 

-cos(mu*x)

 

-sin(mu*x)

 

-cosh(mu*x)

 

-sinh(mu*x)

 

cos(mu*x)

 

sin(mu*x)

(31)

FD61:=subs(A[1]=1,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X6);FD62:=subs(A[1]=0,A[2]=1,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X6);FD63:=subs(A[1]=0,A[2]=0,A[3]=1,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X6);FD64:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=1,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X6);FD65:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=1,A[6]=0,A[7]=0,A[8]=0,X6);FD66:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=1,A[7]=0,A[8]=0,X6);FD67:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=1,A[8]=0,X6);FD68:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=1,X6);

-sinh(mu*x)

 

-cosh(mu*x)

 

-sin(mu*x)

 

cos(mu*x)

 

sinh(mu*x)

 

cosh(mu*x)

 

sin(mu*x)

 

-cos(mu*x)

(32)

 

FD71:=subs(A[1]=1,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X7);FD72:=subs(A[1]=0,A[2]=1,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X7);FD73:=subs(A[1]=0,A[2]=0,A[3]=1,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X7);FD74:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=1,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X7);FD75:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=1,A[6]=0,A[7]=0,A[8]=0,X7);FD76:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=1,A[7]=0,A[8]=0,X7);FD77:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=1,A[8]=0,X7);FD78:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=1,X7);

(EI*sinh(mu*x)*c8*mu^3-cosh(mu*x)*L^3)/L^3

 

(EI*cosh(mu*x)*c8*mu^3-sinh(mu*x)*L^3)/L^3

 

(EI*sin(mu*x)*c8*mu^3-L^3*cos(mu*x))/L^3

 

(-EI*cos(mu*x)*c8*mu^3-sin(mu*x)*L^3)/L^3

 

cosh(mu*x)

 

sinh(mu*x)

 

cos(mu*x)

 

sin(mu*x)

(33)

FD81:=subs(A[1]=1,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X8);FD82:=subs(A[1]=0,A[2]=1,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X8);FD83:=subs(A[1]=0,A[2]=0,A[3]=1,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X8);FD84:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=1,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X8);FD85:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=1,A[6]=0,A[7]=0,A[8]=0,X8);FD86:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=1,A[7]=0,A[8]=0,X8);FD87:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=1,A[8]=0,X8);FD88:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=1,X8);

(-EI*cosh(mu*x)*c44*mu^2-L*sinh(mu*x)*mu)/L^2

 

(-EI*sinh(mu*x)*c44*mu^2-L*cosh(mu*x)*mu)/L^2

 

(EI*cos(mu*x)*c44*mu^2+L*sin(mu*x)*mu)/L^2

 

(EI*sin(mu*x)*c44*mu^2-L*cos(mu*x)*mu)/L^2

 

sinh(mu*x)*mu/L

 

cosh(mu*x)*mu/L

 

-sin(mu*x)*mu/L

 

cos(mu*x)*mu/L

(34)

 

MM:=matrix(8,8,[[FD11,FD12,FD13,FD14,FD15,FD16,FD17,FD18],[FD21,FD22,FD23,FD24,FD25,FD26,FD27,FD28],[FD31,FD32,FD33,FD34,FD35,FD36,FD37,FD38],[FD41,FD42,FD43,FD44,FD45,FD46,FD47,FD48],[FD51,FD52,FD53,FD54,FD55,FD56,FD57,FD58],[FD61,FD62,FD63,FD64,FD65,FD66,FD67,FD68],[FD71,FD72,FD73,FD74,FD75,FD76,FD77,FD78],[FD81,FD82,FD83,FD84,FD85,FD86,FD87,FD88]]);

MM := Matrix(8, 8, {(1, 1) = FD11, (1, 2) = 0, (1, 3) = 1, (1, 4) = 0, (1, 5) = 0, (1, 6) = 0, (1, 7) = 0, (1, 8) = 0, (2, 1) = 0, (2, 2) = 1, (2, 3) = 0, (2, 4) = 1, (2, 5) = 0, (2, 6) = 0, (2, 7) = 0, (2, 8) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 0, (3, 4) = 0, (3, 5) = cosh(mu), (3, 6) = sinh(mu), (3, 7) = -cos(mu), (3, 8) = -sin(mu), (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = 0, (4, 5) = -sinh(mu), (4, 6) = -cosh(mu), (4, 7) = -sin(mu), (4, 8) = cos(mu), (5, 1) = cosh(mu*x), (5, 2) = sinh(mu*x), (5, 3) = -cos(mu*x), (5, 4) = -sin(mu*x), (5, 5) = -cosh(mu*x), (5, 6) = -sinh(mu*x), (5, 7) = cos(mu*x), (5, 8) = sin(mu*x), (6, 1) = -sinh(mu*x), (6, 2) = -cosh(mu*x), (6, 3) = -sin(mu*x), (6, 4) = cos(mu*x), (6, 5) = sinh(mu*x), (6, 6) = cosh(mu*x), (6, 7) = sin(mu*x), (6, 8) = -cos(mu*x), (7, 1) = (EI*sinh(mu*x)*c8*mu^3-cosh(mu*x)*L^3)/L^3, (7, 2) = (EI*cosh(mu*x)*c8*mu^3-sinh(mu*x)*L^3)/L^3, (7, 3) = (EI*sin(mu*x)*c8*mu^3-L^3*cos(mu*x))/L^3, (7, 4) = (-EI*cos(mu*x)*c8*mu^3-sin(mu*x)*L^3)/L^3, (7, 5) = cosh(mu*x), (7, 6) = sinh(mu*x), (7, 7) = cos(mu*x), (7, 8) = sin(mu*x), (8, 1) = (-EI*cosh(mu*x)*c44*mu^2-L*sinh(mu*x)*mu)/L^2, (8, 2) = (-EI*sinh(mu*x)*c44*mu^2-L*cosh(mu*x)*mu)/L^2, (8, 3) = (EI*cos(mu*x)*c44*mu^2+L*sin(mu*x)*mu)/L^2, (8, 4) = (EI*sin(mu*x)*c44*mu^2-L*cos(mu*x)*mu)/L^2, (8, 5) = sinh(mu*x)*mu/L, (8, 6) = cosh(mu*x)*mu/L, (8, 7) = -sin(mu*x)*mu/L, (8, 8) = cos(mu*x)*mu/L})

(35)

Program end

 

NULL

 

``


 

Download Vibration_of_a_cracked_composite_beam.mwVibration_of_a_cracked_composite_beam.mwVibration_of_a_cracked_composite_beam.mw

 

Featured Post

In the applications I am working on, the information are often represented by hierarchical tables (that is tables where some entries can also be tables, and so on).
To help people to understand how this information is organized, I have thought to representent this hierarchical table as a tree graph.
Once this graph built, it becomes very simple to find where a "terminal leaf", that is en entry which is no longer a table, is located in the original table (by location I mean the sequence of indices for which the entry is this "terminal leaf".

The code provided here is pretension free and I do not doubt a single second  that people here will be able to improve it.
I published it for i thought other people could face the same kind of problems that I do.


 

restart

with(GraphTheory):
interface(version);

`Standard Worksheet Interface, Maple 2015.2, Mac OS X, December 21 2015 Build ID 1097895`

(1)

gh := proc(T)
  global s, counter, types:
  local  i:
  if type(T, table) then
    for i in [indices(T, nolist)] do
      if type(T[i], table) then
         s := s, op(map(u -> [i, u], [indices(T[i], nolist)] ));
      else
         counter := counter+1:
         types   := types, _Z_||counter = whattype(T[i]);
         s       := s, [i, _Z_||counter];
      end if:
      thisproc(T[i]):
    end do:
  else
    return s
  end if:
end proc:

t := table([a1=[alpha=1, beta=2], a2=table([a21=2, a22=table([a221=x, a222=table([a2221={1, 2, 3}, a2222=Matrix(2, 2), a2223=u3, a2224=u4])])]), a3=table([a31=u, a32=v])]);

global s, counter, types:
s       := NULL:
counter := 0:
types   := NULL:

ghres := gh(t):
types := [types]:

t := table([a1 = [alpha = 1, beta = 2], a3 = table([a32 = v, a31 = u]), a2 = table([a22 = table([a222 = table([a2222 = (Matrix(2, 2, {(1, 1) = 0, (1, 2) = 0, (2, 1) = 0, (2, 2) = 0})), a2223 = u3, a2221 = {1, 2, 3}, a2224 = u4]), a221 = x]), a21 = 2])])

(2)


These 3 lines determine the set of edges of the form ['t', v], that are not been captured by procedure h.
They correspond to "first level" indices of table t (v in {a1, a2, a3} in the example above)

L := convert(op~(1, [ghres]), set):     
R := convert(op~(2, [ghres]), set):
FirstLevelEdges := map(u -> ['t', u], L union R minus R):


Complete the set of the edges, build the graph representation TG of table t and draw TG.

edges := convert~({ghres, FirstLevelEdges[]}, set):
TG := Graph(edges):

HighlightVertex(TG, Vertices(TG), white):
p := DrawGraph(TG, style=tree, root='t'):
 


The first line is used to change the the "terminal leaves" of names  _Z_n by their type.

eval(t);

p       := subs(types, p):
enlarge := plottools:-transform((x,y) -> [3*x, y]):

plots:-display(enlarge(p), size=[1000, 400]);

table([a1 = [alpha = 1, beta = 2], a3 = table([a32 = v, a31 = u]), a2 = table([a22 = table([a222 = table([a2222 = (Matrix(2, 2, {(1, 1) = 0, (1, 2) = 0, (2, 1) = 0, (2, 2) = 0})), a2223 = u3, a2221 = {1, 2, 3}, a2224 = u4]), a221 = x]), a21 = 2])])

 

 


This procedure is used to find the "indices path" to a terminal leaf.
FindLeaf is then applied to all the terminal leaves.

FindLeaf := proc(TG, leaf)
   local here:
   here := GraphTheory:-ShortestPath(TG, 't', leaf)[1..-2]:
   here := cat(convert(here[1], string), convert(here[2..-1], string)):
   here := StringTools:-SubstituteAll(here, ",", "]["):
   here := parse(here);
end proc:

# where is a2221

printf("%a\n", FindLeaf(TG, a2221));

t[a2][a22][a222]

 

 


 

Download Table_Unfolding_2.mw

 



Definite Integral

Maple asked by johncarl 15 November 16

Display vector components

Maple asked by Scot Gould... 172 November 16

Solving the Matrix Systems

Maple asked by Maple_love... 20 November 17

integration in maple

Maple asked by rameen ham... 15 November 17