Maple 2015 Questions and Posts

These are Posts and Questions associated with the product, Maple 2015

hi.i have a problem with gain Eigenvectors

please help me

thanks

lorenz_1.mw

restart; with(LinearAlgebra[Modular]); A := Matrix(3, 3, [[-a, a, 0], [0, 0, -sqrt(l.b.c.(h+k))/(h+k)], [(2.*h.sqrt(l.b.c.(h+k)))/(l.(h+k)), (2.*k.sqrt(l.b.c.(h+k)))/(l.(h+k)), -c]])

A := Matrix(3, 3, {(1, 1) = -a, (1, 2) = a, (1, 3) = 0, (2, 1) = 0, (2, 2) = 0, (2, 3) = -(`.`(l, b, c, h+k))^(1/2)/(h+k), (3, 1) = 2.*(h.((`.`(l, b, c, h+k))^(1/2)))/(l.(h+k)), (3, 2) = 2.*(k.((`.`(l, b, c, h+k))^(1/2)))/(l.(h+k)), (3, 3) = -c})

(1)

Sol := LinearAlgebra[Eigenvectors](A)

Error, (in evala/preproc3) floats not handled yet

 

``


Download lorenz_1.mw

DEAR SIR,

PLEASE HELP ME WITH THAT QUESTION

MAPLE 15 on Windows 10

I have a file on which I can no longer open. This happened after my computer made me long on again after being gone for a little while. Maple was not running when I got back on. This is not unusal and I just clinck on the file and restart.

This time this did not work.

It comes up with a message asking me to select an input mode. Whatever I select even 'Plain text' it just hangs.

I'd send you an image, but I don't see how to do it. The button provide only allows for something with  url and the snip I made is on my desktop.

I need to get thiis worksheet back. I've put a lot of effort into it.

-Traruh

hi.please help me for solve this equation

i encounter with error''

Error, (in StringTools:-IsPrefix) second argument must be a string''

equations which be solved attached as pdf file

thanks

Kernel4.mw

root.pdf


 

restart

with(LinearAlgebra):

Typesetting:-Settings(functionassign=false):

NULL

Constants

 

landa := 0.404e11; -1; mu := 0.27e11; -1; alpha := 0.23e-4; -1; rho := 2707; -1; k := 204; -1; c := 903; -1; nu := .3; -1; E := 0.70e11; -1; T0 := 293; -1; omega := 0.1e-1

0.1e-1

(1.1.1)

beta := alpha*(3*landa+2*mu):

NULL

varpi := 0.1e-1; -1; No := 15

15

(1.1.2)

 

 

Eq[1] := besselj(0, xi*b)*(eval(diff(bessely(0, xi*r), r), r = a))-(eval(diff(besselj(0, xi*r), r), r = a))*bessely(0, xi*b):

 

wf1 := unapply(Eq[1], xi):

1

 

1.794010904

 

1

 

2

 

1.794010904

 

1

 

3

 

4.802060761

 

2

 

4

 

4.802060761

 

2

 

5

 

4.802060761

 

2

 

6

 

7.908961712

 

3

 

7

 

7.908961712

 

3

 

8

 

7.908961712

 

3

 

9

 

11.03509457

 

4

 

10

 

11.03509457

 

4

 

11

 

11.03509457

 

4

 

12

 

11.03509457

 

4

 

13

 

14.16798650

 

5

 

14

 

14.16798650

 

5

 

15

 

14.16798650

 

5

 

16

 

17.30400975

 

6

(1.2.1)

Eq[2] := MTM:-besselj(1, eta*b)*(eval(diff(MTM:-bessely(1, eta*r), r), r = a))-(eval(diff(MTM:-besselj(1, eta*r), r), r = a))*MTM:-bessely(1, eta*b):

wf2 := unapply(Eq[2], eta):

1

 

1.958510605

 

1

 

2

 

1.958510605

 

1

 

3

 

4.857021628

 

2

 

4

 

4.857021628

 

2

 

5

 

4.857021628

 

2

 

6

 

7.941288451

 

3

 

7

 

7.941288451

 

3

 

8

 

7.941288451

 

3

 

9

 

11.05802155

 

4

 

10

 

11.05802155

 

4

 

11

 

11.05802155

 

4

 

12

 

11.05802155

 

4

 

13

 

14.18576207

 

5

 

14

 

14.18576207

 

5

 

15

 

14.18576207

 

5

 

16

 

17.31852918

 

6

(1.2.2)

 

for m to MM do K0[m] := proc (r, m) options operator, arrow; BesselJ(0, xi[m]*r)*BesselY(0, xi[m]*b)-BesselJ(0, xi[m]*b)*BesselY(0, xi[m]*r) end proc; KK0[m] := proc (r, m) options operator, arrow; diff(K0[m](r, m), r) end proc; K1[n] := proc (r, n) options operator, arrow; BesselJ(1, eta__n*r)*BesselY(1, eta__n*b)-BesselJ(1, eta__n*b)*BesselY(1, eta__n*r) end proc; KK1[n] := proc (r, n) options operator, arrow; diff(K1[n](r, n), r) end proc end do

proc (r, m) options operator, arrow; BesselJ(0, xi[m]*r)*BesselY(0, xi[m]*b)-BesselJ(0, xi[m]*b)*BesselY(0, xi[m]*r) end proc

 

proc (r, m) options operator, arrow; MTM:-diff(K0[m](r, m), r) end proc

 

proc (r, n) options operator, arrow; BesselJ(1, eta__n*r)*BesselY(1, eta__n*b)-BesselJ(1, eta__n*b)*BesselY(1, eta__n*r) end proc

 

proc (r, n) options operator, arrow; MTM:-diff(K1[n](r, n), r) end proc

 

proc (r, m) options operator, arrow; BesselJ(0, xi[m]*r)*BesselY(0, xi[m]*b)-BesselJ(0, xi[m]*b)*BesselY(0, xi[m]*r) end proc

 

proc (r, m) options operator, arrow; MTM:-diff(K0[m](r, m), r) end proc

 

proc (r, n) options operator, arrow; BesselJ(1, eta__n*r)*BesselY(1, eta__n*b)-BesselJ(1, eta__n*b)*BesselY(1, eta__n*r) end proc

 

proc (r, n) options operator, arrow; MTM:-diff(K1[n](r, n), r) end proc

 

proc (r, m) options operator, arrow; BesselJ(0, xi[m]*r)*BesselY(0, xi[m]*b)-BesselJ(0, xi[m]*b)*BesselY(0, xi[m]*r) end proc

 

proc (r, m) options operator, arrow; MTM:-diff(K0[m](r, m), r) end proc

 

proc (r, n) options operator, arrow; BesselJ(1, eta__n*r)*BesselY(1, eta__n*b)-BesselJ(1, eta__n*b)*BesselY(1, eta__n*r) end proc

 

proc (r, n) options operator, arrow; MTM:-diff(K1[n](r, n), r) end proc

 

proc (r, m) options operator, arrow; BesselJ(0, xi[m]*r)*BesselY(0, xi[m]*b)-BesselJ(0, xi[m]*b)*BesselY(0, xi[m]*r) end proc

 

proc (r, m) options operator, arrow; MTM:-diff(K0[m](r, m), r) end proc

 

proc (r, n) options operator, arrow; BesselJ(1, eta__n*r)*BesselY(1, eta__n*b)-BesselJ(1, eta__n*b)*BesselY(1, eta__n*r) end proc

 

proc (r, n) options operator, arrow; MTM:-diff(K1[n](r, n), r) end proc

 

proc (r, m) options operator, arrow; BesselJ(0, xi[m]*r)*BesselY(0, xi[m]*b)-BesselJ(0, xi[m]*b)*BesselY(0, xi[m]*r) end proc

 

proc (r, m) options operator, arrow; MTM:-diff(K0[m](r, m), r) end proc

 

proc (r, n) options operator, arrow; BesselJ(1, eta__n*r)*BesselY(1, eta__n*b)-BesselJ(1, eta__n*b)*BesselY(1, eta__n*r) end proc

 

proc (r, n) options operator, arrow; MTM:-diff(K1[n](r, n), r) end proc

 

proc (r, m) options operator, arrow; BesselJ(0, xi[m]*r)*BesselY(0, xi[m]*b)-BesselJ(0, xi[m]*b)*BesselY(0, xi[m]*r) end proc

 

proc (r, m) options operator, arrow; MTM:-diff(K0[m](r, m), r) end proc

 

proc (r, n) options operator, arrow; BesselJ(1, eta__n*r)*BesselY(1, eta__n*b)-BesselJ(1, eta__n*b)*BesselY(1, eta__n*r) end proc

 

proc (r, n) options operator, arrow; MTM:-diff(K1[n](r, n), r) end proc

(1.2.3)

U1 := -(int(r*K0[m]*(diff(K1[n], r)+K1[n]/r), r = a .. b))/(int(r*K0[m]^2, r = a .. b)); -1; U2 := -(int(r*K1[n]*(diff(K0[m], r)), r = a .. b))/(int(r*K1[n]^2, r = a .. b)); -1; U3 := (int(r^2*omega^2*K1[n], r = a .. b))/(int(r*K1[n]^2, r = a .. b))

0.1555555555e-3/K1[0]

(1.2.4)

m := 0; -1; for m to MM do M__m := int(r*K1[m](r, m)^2, r = a .. b); bb__m := 1/M__m end do

int(r*K1[1](r, 1)^2, r = 1 .. 2)

 

1/(int(r*K1[1](r, 1)^2, r = 1 .. 2))

 

int(r*K1[2](r, 2)^2, r = 1 .. 2)

 

1/(int(r*K1[2](r, 2)^2, r = 1 .. 2))

 

int(r*K1[3](r, 3)^2, r = 1 .. 2)

 

1/(int(r*K1[3](r, 3)^2, r = 1 .. 2))

 

int(r*K1[4](r, 4)^2, r = 1 .. 2)

 

1/(int(r*K1[4](r, 4)^2, r = 1 .. 2))

 

int(r*K1[5](r, 5)^2, r = 1 .. 2)

 

1/(int(r*K1[5](r, 5)^2, r = 1 .. 2))

 

int(r*K1[6](r, 6)^2, r = 1 .. 2)

 

1/(int(r*K1[6](r, 6)^2, r = 1 .. 2))

(1.2.5)

MM; 1; n; 1; m; 1; U1; 1; U2; 1; U3; 1; xi

6

 

0

 

7

 

-(2/3)*K1[0]/K0[7]

 

0

 

0.1555555555e-3/K1[0]

 

xi

(1.2.6)

for m to MM do for n to MM do dsys := {diff(S[m][n](t), t, t, t)+xi^2*[m]*(diff(S[m][n](t), t, t))+(-U1*U2+`η__η__n__`^2)*(diff(S[m][n](t), t))+xi[m]^2*`η__η__n__`^2*S[m][n](t) = -(2*U2*bb[m]/(Pi*xi[m])*(-BesselJ(0, xi[m]*b)/BesselJ(1, xi[m]*a)))*q+xi^2*[m]*U3} end do end do; sol := dsolve(dsys)

Error, (in StringTools:-IsPrefix) second argument must be a string

 

 

NULL

for m to MM do for n to MM do dsys2 := {diff(Q__mn(t), t, t, t)+xi[m]^2*(diff(Q__mn(t), t, t))+(-U1*U2+eta__n^2)*(diff(Q__mn(t), t))+xi[m]^2*eta__n^2*Q__mn(t) = -2*BesselJ(0, xi[m]*b)*U1*U2*b__m*(1-exp(-xi[m]^2*t))/(BesselJ(1, xi[m]*a)*Pi*xi[m]^3)} end do end do;

sol2 := dsolve(dsys2)

Error, (in dsolve) invalid input: `PDEtools/sdsolve` expects its 1st argument, SYS, to be of type Or(set({`<>`, `=`, algebraic}), list({`<>`, `=`, algebraic}), `casesplit/ans`(list, list)), but received [{Q__mn(t)*pochhammer(1-n, n)+(1497143767/5000000)*(diff(Q__mn(t), [`$`(t, t)]))+eta__n^2*(diff(Q__mn(t), t))+(1497143767/5000000)*eta__n^2*Q__mn(t) = 0}]

 

``

NULL

NULL

 

Download Kernel4.mw

I want to reference the previous equation/expression which is not displayed (':')in my worksheet. I allready know the '%' sign, but this references the previous equation/expression which was executed . By previous I mean the result (which is not displayed) in the previous line.

As I do not want the previous equation to be displayed I also cannot use the equation lable (CTRL+L).

 

Example

x:=a=b+1:

solve(previous,{b});

 

Thank you for your help.

I'm new here, so I'm not totally sure this is the right place to ask this. I apologize if it isn't, please let me know in that case.

 

My problem is that Maple won't recognize the built-in command 'complexplot3d'. For example, typing:

complexplot3d(z^2, z = -1-I .. 1+I)

doesn't do anything, and it's displayed again in blue as if it was not a command.

 

Any kind of help would be extremely helpful, as I have no clue of what's going on. Thanks in advance!

hi

if possible to convert matlab file in to maple fie program??convert_to_maple_program.txt

thanks

 

hi.please help me for remove error'' 

Error, illegal use of an object as a name''

 

thanks

PLATE.mw

   

Parse:-ConvertTo1D, "first argument to _Inert_ASSIGN must be assignable"

Error, illegal use of an object as a name

"restart:Digits :=15: beta:=10:alpha:=100: xi:=.5: upsilon:=0.2841945289:n:=3: aa:=1:b:=1:N_x:=0.4:N_y:=0.4:N_xy:=0: hl2:=1:mu:=65.8e9:E:=169e9: delta0:=1:delta1:=1: mus:=3:D1:=2;h:=1: lambda:=0.1: D2:=5:A1:=-2:A2:=-2:A3:=-6:A4:=7:A5:=7:A6:=7:A7:=7:A8:=8:A9:=7:A10:=7:A11:=1: A12:=1:tau:=4.730040745:t:=0: g2:=sin(theta):g3:=cos(theta):g1:=cos(theta):a:=0.0:with(Student[Calculus1]): a1:=evalf((A1*ApproximateInt(g3^2,theta=a..1,method=simpson)  ) ) : a2:= evalf(A2*ApproximateInt(g3*((&DifferentialD;)^2)/((&DifferentialD;theta)^2)g3,theta=a..1,method=simpson)): a3:=evalf(A3*ApproximateInt(g3*g3,theta=a..1,method=simpson)) : a4:=evalf(A4*ApproximateInt(g3*g3,theta=a..1,method=simpson)) :a5:=evalf(A5*ApproximateInt(g3^2,theta=a..1,method=simpson)) : a6:=evalf(A6*ApproximateInt(((&DifferentialD;)^2)/((&DifferentialD;theta)^2)g3*g3,theta=a..1,method=simpson)) :a7:=evalf(A7*ApproximateInt(g3*g3,theta=a..1,method=simpson)): a8:=evalf(A8*ApproximateInt(g3^2,theta=a..1,method=simpson)):a9:=evalf(ApproximateInt(A9*(g3*g3 )     ,theta=a..1,method=simpson)) :a10:=evalf(A10*ApproximateInt(g3*g3,theta=a..1,method=simpson)):a11:=evalf(ApproximateInt(1,theta=a..1,method=simpson)):a12:=evalf(ApproximateInt(1*(1-1/2 (1)),theta=a..1,method=simpson)):dsys3 := { f3(x)*(a1)+ f3(x)*(a2)  +((&DifferentialD;)^2)/((&DifferentialD;x)^2) f3(x)*(a3) +f3(x)*a4+ f3(x)*(a5) +((&DifferentialD;)^2)/((&DifferentialD;x)^2) f3(x)*(a6) +f3(x)*a7= ((&DifferentialD;)^2)/((&DifferentialD;x)^2) f3(x) *(a8)   + a9*(&DifferentialD;)/(&DifferentialD;x) f3(x) +f3(x)*a10+ a11+a12  , f3(1) =0,f3(0) =0 , D^(1)(f3)(1) = 0, D^(1)(f3)(0)=0,D^(3)(f3)(1) = 0, D^(3)(f3)(0)=0}    :dsol5 := dsolve(dsys3, 'maxmesh'=2024, numeric,abserr=.0001, range=0..1, output=listprocedure):fy3:= eval(f3(x),dsol5):with(CurveFitting):fy33:=PolynomialInterpolation([[0,fy3(0)],[.1,fy3(0.1)],[.2,fy3(0.2)],[0.3,fy3(0.3)],[.4,fy3(0.4)],[.5,fy3(0.5)],[0.6,fy3(0.6)],[0.7,fy3(0.7)],[0.8,fy3(0.8)],[0.9,fy3(0.9)],[1,fy3(1)]],x): d1:=A1*ApproximateInt(((&DifferentialD;)^6)/((&DifferentialD;x)^6)fy33*fy33,x=a..1,method=simpson)   :d2:= A2*ApproximateInt(((&DifferentialD;)^4)/((&DifferentialD;x)^4)fy33*fy33 ,x=a..1,method=simpson)   :d3:=A3*ApproximateInt(((&DifferentialD;)^2)/((&DifferentialD;x)^2)fy33*fy33,x=a..1,method=simpson): d4:= A4*ApproximateInt(fy33*fy33,x=a..1,method=simpson):d5:=A5*ApproximateInt(((&DifferentialD;)^4)/((&DifferentialD;x)^4)fy33*fy33,x=a..1,method=simpson)  : d6:=A6*ApproximateInt(((&DifferentialD;)^2)/((&DifferentialD;x)^2)fy33*fy33,x=a..1,method=simpson)    :d7:=A7*ApproximateInt(fy33*fy33,x=a..1,method=simpson)  :d8:=A8*ApproximateInt(((&DifferentialD;)^2)/((&DifferentialD;x)^2)fy33*fy33,x=a..1,method=simpson)      :d9:=ApproximateInt(A9*(((&DifferentialD;)^1)/((&DifferentialD;x)^1)fy33*fy33 )   ,x=a..1,method=simpson) :d10:=A10*ApproximateInt(fy33*fy33,x=a..1,method=simpson)    :d11:=evalf(ApproximateInt(1,theta=a..1,method=simpson)):d12:=evalf(ApproximateInt(1*(1-1/2 (1)),theta=a..1,method=simpson))  : d sys4 := { h3(theta)*(d1)+((&DifferentialD;)^2)/((&DifferentialD;theta)^2) h3(theta)*(d2)+((&DifferentialD;)^4)/((&DifferentialD;theta)^4) h3(theta)*(d3)+ ((&DifferentialD;)^6)/((&DifferentialD;theta)^6) h3(theta)*(d4)+h3(theta) *(d5)+ h3(theta) *(d6) +((&DifferentialD;)^4)/((&DifferentialD;theta)^4) h3(theta)*(d7)= h3(theta)*(d8)  +d9*(&DifferentialD;)/(&DifferentialD;theta) h3(theta)  +((&DifferentialD;)^2)/((&DifferentialD;theta)^2) h3(theta)*(d10)  +d11+d12   ,h3(1) = 0,h3(0) = 0 , D^(1)(h3)(1) = 0, D^(1)(h3)(0)=0,D^(3)(h3)(1) = 0, D^(3)(h3)(0)=0}  :dsol6 := dsolve(dsys4, 'maxmesh'=2024, abserr=.0001, range=0..1, numeric, output=listprocedure):g33:= eval(h3(theta),dsol6):with(CurveFitting):g3:=PolynomialInterpolation([[0,g33(0)],[.1,g33(0.1)],[.2,g33(0.2)],[0.3,g33(0.3)],[.4,g33(0.4)],[.5,g33(0.5)],[0.6,g33(0.6)],[0.7,g33(0.7)],[0.8,g33(0.8)],[0.9,g33(0.9)],[1,g33(1)]],theta):"

 

 

``

 

Download PLATE.mw

hi.how i can determind  eignvalue of matrix in the form parametric?

thanks1.mw

T := Matrix(5, 5, {(1, 1) = -b*beta*k/(c*u)-d, (1, 2) = 0, (1, 3) = -beta*lambda*c*u/(b*beta*k+c*d*u), (1, 4) = 0, (1, 5) = 0, (2, 1) = b*beta*k/(c*u), (2, 2) = -s*(lambda*c*k*beta/(b*beta*k+c*d*u)-a)/P-a, (2, 3) = beta*lambda*c*u/(b*beta*k+c*d*u), (2, 4) = -s*b/c, (2, 5) = r*(s-p)/s, (3, 1) = 0, (3, 2) = k, (3, 3) = -u, (3, 4) = 0, (3, 5) = 0, (4, 1) = 0, (4, 2) = -s*(lambda*c*k*beta/(b*beta*k+c*d*u)-a)/P, (4, 3) = 0, (4, 4) = -s*b/c-b, (4, 5) = r*(s+c)/s, (5, 1) = 0, (5, 2) = s*(lambda*c*k*beta/(b*beta*k+c*d*u)-a)/P, (5, 3) = 0, (5, 4) = s*b/c, (5, 5) = -r})

Matrix(5, 5, {(1, 1) = -b*beta*k/(c*u)-d, (1, 2) = 0, (1, 3) = -beta*lambda*c*u/(b*beta*k+c*d*u), (1, 4) = 0, (1, 5) = 0, (2, 1) = b*beta*k/(c*u), (2, 2) = -s*(lambda*c*k*beta/(b*beta*k+c*d*u)-a)/P-a, (2, 3) = beta*lambda*c*u/(b*beta*k+c*d*u), (2, 4) = -s*b/c, (2, 5) = r*(s-p)/s, (3, 1) = 0, (3, 2) = k, (3, 3) = -u, (3, 4) = 0, (3, 5) = 0, (4, 1) = 0, (4, 2) = -s*(lambda*c*k*beta/(b*beta*k+c*d*u)-a)/P, (4, 3) = 0, (4, 4) = -s*b/c-b, (4, 5) = r*(s+c)/s, (5, 1) = 0, (5, 2) = s*(lambda*c*k*beta/(b*beta*k+c*d*u)-a)/P, (5, 3) = 0, (5, 4) = s*b/c, (5, 5) = -r})

(1)

``

 

Download 1.mw

 

how to convert system of differential equations to differential form for evalDG?

 

[a(t)*(diff(c(t), t))+b(t), a(t)*(diff(b(t), t))+c(t)*(diff(b(t), t)), a(t)*(diff(c(t), t))+a(t)*(diff(b(t), t))+b(t)];

when i try eliminate dt which is the denominator

eliminate([a(t)*dc(t) + b(t)*dt,a(t)*db(t)+dt*c(t)*db(t),a(t)*dc(t)+a(t)*db(t)+b(t)*dt],dt);

[{dt = -a(t)/c(t)}, {a(t)*(c(t)*dc(t)-b(t)), a(t)*(db(t)*c(t)+c(t)*dc(t)-b(t))}]

 

i got two solutions, which one is correct?

a(t)*(c(t)*dc(t)-b(t)), a(t)*(db(t)*c(t)+c(t)*dc(t)-b(t))

does it mean that two have to use together to form a differential form?

 

update1

with(DifferentialGeometry):
DGsetup([a,b,c], M);
X := evalDG({a*(c*D_c-b), a*(D_b*c+c*D_c-b(t))});
Flow(X,t);
Flow(X, t, ode = true);

got error when run with above result

 

hi.i am a problem for solving this non linear algebric equation.

please help me...thanks

FSOLVE.mw

FSOLVE.mw

 

I read in the net that the method used in pdsolve numeric is the theta method, my question: is it the most efficient with regard to rate of convergence of the numerical solution of the PDE?

If not then why is it used as the default method?

 

Thanks.

 

nullspace or reducedform or Eigenvectors still can not find eigenvector in terms of  mmm , how to find this?

 

mmm is a variable

H2 := [a(t)*(diff(c(t), t))+b(t) = 100, a(t)*(diff(b(t), t))+c(t)*(diff(b(t), t)) = exp(t), a(t)*(diff(c(t), t))+a(t)*(diff(b(t), t))+b(t) = 90];
H1 := subs([diff(a(t),t)=a1,diff(b(t),t)=b1,diff(c(t),t)=c1], H2);
H := subs([a(t)=a0, b(t)=b0, c(t)=c0], H1);
ics := generate_ic(H, {a0=-2..2, b0=-2..2, c0=-2..2,a1 = -2 .. 2, b1 = -2 .. 2, c1 = -2 .. 2, t = 0, energy = 0}, 100);

 

Error, (in generate_ic) invalid input: `DEtools/generate_ic` expects its 1st argument, H, to be of type algebraic, but received [a0*c1+b0 = 100, a0*b1+c0*b1 = exp(t), a0*c1+a0*b1+b0 = 90]

First 7 8 9 10 11 12 13 Last Page 9 of 72