Question: How do I get an expression relation between coefficients of this system of equations?

I have system of equation contain of two equations

eq1:=a1*x^2+b1*y^2+c1*x*y+d1*x+e1*y+f1:
eq2:=a2*x^2+b2*y^2+c2*x*y+d2*x+e2*y+f2: 

I want to find the number k so that the equation

a1*x^2+b1*y^2+c1*x*y+d1*x+e1*y+f1 + k*(a2*x^2+b2*y^2+c2*x*y+d2*x+e2*y+f2) = 0

can be factor, where k satisfy

a:=a1+k*a2:
b:=b1+k*b2:
c:=c1+k*c2:
d:=d1+k*d2:
e:=e1+k*e2:
f:=f1+k*f2:

I tried

A:=a*x^2+b*y^2+c*x*y+d*x+e*y+f:
collect(A,x);
B:=collect(discrim(A, x), y);
C:= discrim(B,y);

and got the expression

-16*(4*a*b*f-a*e^2-b*d^2-c^2*f+c*d*e)*a=0.

For example 

> restart:

a1:=14:

b1:=-21:

c1:=0:

d1:=-6:

e1:=45:

f1:=-14:

a2:=35:

b2:=28:

c2:=0:

d2:=41:

e2:=-122:

f2:=56:

a:=a1+k*a2:

b:=b1+k*b2:

c:=c1+k*c2:

d:=d1+k*d2:

e:=e1+k*e2:

f:=f1+k*f2:

P:=c*d*e+4*a*b*f-a*e^2-b*d^2

-f*c^2:

eq1:=a1*x^2+b1*y^2+c1*x*y+d1*x+e1*y+f1:

eq2:=a2*x^2+b2*y^2+c2*x*y+d2*x+e2*y+f2:

with(RealDomain):

Q:=solve(P=0,k);

factor(eq1+Q*(eq2));

solve([

eq1=0,eq2],[x,y]);

Where, Q is k which I want to find. 

My question is, if I have the system of equations

eq1:=a1*x^3+b1*y^3+c1*x^2*y+ d1*x*y^2 + e1*x+f1*y+g1:
eq2:=a2*x^3+b2*y^3+c2*x^2*y+ d2*x*y^2 + e2*x+f2*y+g2

How can I get a similar to the 

-16*(4*a*b*f-a*e^2-b*d^2-c^2*f+c*d*e)*a=0?

 

 

 

Please Wait...