Question: Simplification of an expression

Dear users!

Hope everyone should be fine here. I need the following simiplification. I did it step by step is there and maple command to do this.

I am waiting your positive answer.

(diff(theta(eta), eta, eta))*(Rd*T[infinity]^3*(`θw`-1)^3*theta(eta)^3+3*Rd*T[infinity]^3*(`θw`-1)^2*theta(eta)^2+(3*(Rd*T[infinity]^3+(1/3)*epsilon*k[nf]))*(`θw`-1)*theta(eta)+Rd*T[infinity]^3+k[nf]) = (-3*Rd*T[infinity]^3*(`θw`-1)^3*theta(eta)^2-6*Rd*T[infinity]^3*(`θw`-1)^2*theta(eta)+(-3*Rd*T[infinity]^3-epsilon*k[nf])*(`θw`-1))*(diff(theta(eta), eta))^2+(-(rho*c[p])[nf]*nu[f]*f(eta)-(rho*c[p])[nf]*nu[f]*g(eta))*(diff(theta(eta), eta))+a*nu[f]*mu[nf]*(diff(f(eta), eta))^2/((-`θw`+1)*T[infinity])-2*a*nu[f]*mu[nf]*(diff(g(eta), eta))*(diff(f(eta), eta))/((`θw`-1)*T[infinity])+a*nu[f]*mu[nf]*(diff(g(eta), eta))^2/((-`θw`+1)*T[infinity])

 

(diff(theta(eta), eta, eta))*Rd*T[infinity]^3*(theta(eta)*`θw`-theta(eta)+1)^3+(diff(theta(eta), eta, eta))*k[nf]*(epsilon*theta(eta)*`θw`-epsilon*theta(eta)+1)+3*Rd*T[infinity]^3*(`θw`-1)*(theta(eta)*`θw`-theta(eta)+1)^2*(diff(theta(eta), eta))^2+epsilon*k[nf]*(`θw`-1)*(diff(theta(eta), eta))^2

 

diff((theta(eta)*`θw`-theta(eta)+1)^3*(diff(theta(eta), eta))*Rd*T[infinity]^3, eta)+diff((epsilon*theta(eta)*`θw`-epsilon*theta(eta)+1)*(diff(theta(eta), eta))*k[nf], eta);

Please Wait...