Question: how to evaluate a complex integrations by maple

hi, I am trying to evaluate the following integrations (Note that; the values of alpha, lambda_1 and lambda_2) are random and they change with every iteration 

`λ1_B`[so] := 10.94:

``

W[1] := evalf[4](int(`α_B`[so]^2/((z-1+`α_B`[so])^2*(z^(`λ2_B`[so]/`λ1_B`[so])-1+`α_B`[so])), z = 1 .. infinity)); W[2] := evalf[4](int(z^(`λ2_B`[so]/`λ1_B`[so])*ln(z)/((z-1+`α_B`[so])^2*(z^(`λ2_B`[so]/`λ1_B`[so])-1+`α_B`[so])^2), z = 1 .. infinity)); W[3] := evalf[4](int(1/((z-1+`α_B`[so])^2*(z^(`λ2_B`[so]/`λ1_B`[so])-1+`α_B`[so])^2), z = 1 .. infinity)); W[4] := evalf[4](int(z^(`λ2_B`[so]/`λ1_B`[so])*ln(z)^2/((z-1+`α_B`[so])^2*(z^(`λ2_B`[so]/`λ1_B`[so])-1+`α_B`[so])^2), z = 1 .. infinity)); W[5] := evalf[4](int(1/((z-1+`α_B`[so])^3*(z^(`λ2_B`[so]/`λ1_B`[so])-1+`α_B`[so])), z = 1 .. infinity)); W[6] := evalf[4](int((z^(`λ2_B`[so]/`λ1_B`[so]))^2*ln(z)^2/((z-1+`α_B`[so])^2*(z^(`λ2_B`[so]/`λ1_B`[so])-1+`α_B`[so])^3), z = 1 .. infinity)); W[7] := evalf[4](int(z^(`λ2_B`[so]/`λ1_B`[so])*ln(z)/((z-1+`α_B`[so])^2*(z^(`λ2_B`[so]/`λ1_B`[so])-1+`α_B`[so])^3), z = 1 .. infinity)); W[8] := evalf[4](int(1/((z-1+`α_B`[so])^2*(z^(`λ2_B`[so]/`λ1_B`[so])-1+`α_B`[so])^3), z = 1 .. infinity)); W[9] := evalf[4](int(z^(`λ2_B`[so]/`λ1_B`[so])*ln(z)/((z-1+`α_B`[so])^3*(z^(`λ2_B`[so]/`λ1_B`[so])-1+`α_B`[so])^2), z = 1 .. infinity)); W[10] := evalf[4](int(1/((z-1+`α_B`[so])^4*(z^(`λ2_B`[so]/`λ1_B`[so])-1+`α_B`[so])), z = 1 .. infinity)); W[11] := evalf[4](int(1/((z-1+`α_B`[so])^3*(z^(`λ2_B`[so]/`λ1_B`[so])-1+`α_B`[so])^2), z = 1 .. infinity))

int(79.977249/((z+7.943)^2*(z^.1408592322+7.943)), z = 1 .. infinity)

 

Warning,  computation interrupted

 

Warning,  computation interrupted

 

0.1744e-1

 

Warning,  computation interrupted

 

0.3348e-2

 

Warning,  computation interrupted

 

Warning,  computation interrupted

 

Warning,  computation interrupted

 

Warning,  computation interrupted

 

Warning,  computation interrupted

 

``

``


 

Download ask_maple.mw

 

Please Wait...