# Question:Whose minimum value is more reliable？

## Question:Whose minimum value is more reliable？

Maple 2019

I have a problem about extremal function.

The function is shown below with restricted condition of x and a:  x>=2 and -1 < a <0.

(x-3/2)^a-(x-1)^a+(1-2^(a-1))*((x-3/2)^a-(x-1/2)^a)-x*((x-3/2)^a+x^a-(x-1/2)^a-(x-1)^a)

I guess that  it's minimum value is greater than 0.  In other words,  I want prove that  (x-3/2)^a-(x-1)^a+(1-2^(a-1))*((x-3/2)^a-(x-1/2)^a)-x*((x-3/2)^a+x^a-(x-1/2)^a-(x-1)^a)>0

when I use Minimize function,

Optimization:-Minimize((x-3/2)^a-(x-1)^a+(1-2^(a-1))*((x-3/2)^a-(x-1/2)^a)-x*((x-3/2)^a+x^a-(x-1/2)^a-(x-1)^a),{x>=2, -1<a, a<0})

I 'm not seeing but Error, (in Optimization:-NLPSolve) strict inequalities are not valid constraints. I cannot but add the condition of equality of a : -1<=a, a<=0.

Optimization:-Minimize((x-3/2)^a-(x-1)^a+(1-2^(a-1))*((x-3/2)^a-(x-1/2)^a)-x*((x-3/2)^a+x^a-(x-1/2)^a-(x-1)^a),{x>=2, -1<=a, a<=0})

A result is returned with a warning:
Warning, no iterations performed as initial point satisfies first-order conditions
[0.000000, [a = -2.225074*10^(-308), x = 2.000000]]

Local or Global ?

When I read recent question post

https://www.mapleprimes.com/questions/229132-Maximize-Function-Does-Not-Work?ref=Feed:MaplePrimes:New%20Questions

I'm worrying  that Maple only returns local  extremun. So I use the freely  maple package DirectSearch. We can get it from  https://www.maplesoft.com/applications/view.aspx?SID=101333.

DirectSearch:-GlobalOptima(-((x-3/2)^a-(x-1)^a+(1-2^(a-1))*((x-3/2)^a-(x-1/2)^a)-x*((x-3/2)^a+x^a-(x-1/2)^a-(x-1)^a)),{x>=2, -1<a, a<0},maximize);

Note: I add a  minus sign to find maximize value .

It returns: [0.002264, [a = -0.000203, x = 1.019590*10^13], 605]

But I substitute the value of a and x  into the function，it returns strange result:   4078.360000 not  -0.002264.

I’m confused..

I try to use  Mathematica,

NMinimize[{(x - 3/2)^a - (x - 1)^
a + (1 - 2^(a - 1))*((x - 3/2)^a - (x - 1/2)^a) -
x*((x - 3/2)^a + x^a - (x - 1/2)^a - (x - 1)^a),
x >= 2 && a > -1 && a <= 0}, {x, a}]

It retruns {0., {x -> 13.256, a -> 0.}}  May be well.

mimimize.mw

﻿