Question: How to numericaly solve a system of differential equations with three PDEs and one ODE?

I'm trying to obtain the dynamical response of a simply-supported beam with a cantilever extension, coupled to a spring-mass system. In mathematical terms, this system is ruled by three PDEs (relative to each bare part of the main structure) and one ODE (relative to the spring-mass system). I think my mathemical model is finely formulated, but Maple keeps telling me this:

Error, (in pdsolve/numeric/process_IBCs) improper op or subscript selector

I believe it is because my PDEs depend on "x" and "t", while the ODE depends solely on "t". I have tried to transform my ODE into a "PDE", making it also dependent of "x", but without imposing any boundary conditions relative to "x". However, after this Maple points a new error message:

Error, (in pdsolve/numeric) initial/boundary conditions must be defined at one or two points for each independent variable

Could someone help me finding a solution? My algorythm in shown in the attached file below.

Please Wait...