Question: about Abel first order ODE's in Maple

According to Wikipedia, Abel's first order odes have general analytical solutions, due to "Panayotounakos, Dimitrios E.; Zarmpoutis, Theodoros I. (2011)" where the claim is that, if I understand it right, all Abel ode's can be solved analytically.

https://en.wikipedia.org/wiki/Abel_equation_of_the_first_kind

"Construction of Exact Parametric or Closed Form Solutions of Some Unsolvable Classes of Nonlinear ODEs (Abel's Nonlinear ODEs of the First Kind and Relative Degenerate Equations)"

Maple is very good on solving ODE's, but some Abel ode's it can not solve. For example

restart;
ode:=diff(y(t),t)= y(t)^3+exp(-5*t);#_Abel
ode:=diff(y(x),x) = (1+x^3*y(x))*y(x)^2;#_Abel
ode:=diff(y(x),x) = y(x)^2-a*x*(1-x^(n-1))*y(x)^3;#_Abel
ode:=diff(y(x),x) = a*y(x)^2+x*y(x)^3*(b+c*x^(n-1));#_Abel
ode:=diff(y(x),x) = f0(x)+f1(x)*y(x)+f2(x)*y(x)^2+f3(x)*y(x)^3;#_Abel
ode:=(tan(x)*sec(x)-2*y(x))*diff(y(x),x)+sec(x)*(1+2*y(x)*sin(x)) = 0;#_Abel, `2nd type`, `class A`
ode:=x*(a+y(x))*diff(y(x),x)+b*x+c*y(x) = 0; #[_Abel, `2nd type`, `class B`]
ode:=(g0(x)+y(x)*g1(x))*diff(y(x),x) = f0(x)+f1(x)*y(x)+f2(x)*y(x)^2+f3(x)*y(x)^3;#_Abel, `2nd type`, `class C`

etc..

All the above Abel ode's are from Book: Ordinary differential equations and their solutions. By George Moseley Murphy. 1960

I am just asking what is the status of this. Is it true there is now a method to solve all these exactly and may be Maple's implementation is not in yet for this? 

btw, I found the description of solution methods in https://fr.maplesoft.com/support/help/Maple/view.aspx?path=odeadvisor/Abel much easier to follow to learn how to solve Abel ode's. That paper mentioned on Wikipeida, I had hard time following after the 3rd page. (need more time to study it).

Could someone please comment on the status of solving Abel's first order ODE's in Maple and if it possible now to solve them all analytically?

 

 

 

 

 

Please Wait...