Question: I am trying to solve this coupled PDEs. For ths olution I am getting this equation, could someone let me know what that means?

restart

eq1 := (2*(r^2+a^2*cos(theta)^2))*(M*r-(1/2)*a^2-(1/2)*r^2)*(diff(f(r, theta), r, theta))+(2*(a^2*(M-r)*cos(theta)^2-M*r^2+a^2*r))*(diff(f(r, theta), theta))

2*(r^2+a^2*cos(theta)^2)*(M*r-(1/2)*a^2-(1/2)*r^2)*(diff(diff(f(r, theta), r), theta))+2*(a^2*(M-r)*cos(theta)^2-M*r^2+a^2*r)*(diff(f(r, theta), theta))

(1)

eq2 := sin(theta)*(r^2+a^2*cos(theta)^2)*(diff(f(r, theta), theta, theta))-cos(theta)*(diff(f(r, theta), theta))*(a^2*cos(theta)^2-2*a^2-r^2)

sin(theta)*(r^2+a^2*cos(theta)^2)*(diff(diff(f(r, theta), theta), theta))-cos(theta)*(diff(f(r, theta), theta))*(a^2*cos(theta)^2-2*a^2-r^2)

(2)

eq3 := -2*(r^2+a^2*cos(theta)^2)^2*(M*r-(1/2)*a^2-(1/2)*r^2)*sin(theta)*(diff(g(r, theta), r, r))+sin(theta)*(r^2+a^2*cos(theta)^2)^2*(diff(g(r, theta), theta, theta))+(4*(-(1/4)*cos(theta)^4*a^4+a^2*r*(M-(1/2)*r)*cos(theta)^2-M*a^2*r-(1/4)*r^4))*cos(theta)*(diff(g(r, theta), theta))-2*M*sin(theta)*(diff(g(r, theta), r))*(a^2+r^2)*(cos(theta)*a-r)*(cos(theta)*a+r)

-2*(r^2+a^2*cos(theta)^2)^2*(M*r-(1/2)*a^2-(1/2)*r^2)*sin(theta)*(diff(diff(g(r, theta), r), r))+sin(theta)*(r^2+a^2*cos(theta)^2)^2*(diff(diff(g(r, theta), theta), theta))+4*(-(1/4)*cos(theta)^4*a^4+a^2*r*(M-(1/2)*r)*cos(theta)^2-M*a^2*r-(1/4)*r^4)*cos(theta)*(diff(g(r, theta), theta))-2*M*sin(theta)*(diff(g(r, theta), r))*(a^2+r^2)*(cos(theta)*a-r)*(cos(theta)*a+r)

(3)

pdsolve([eq1, eq2, eq3])

[{f(r, theta) = _F1(r)+(Int((r^2+a^2*cos(theta)^2)/((cos(theta)+1)^(1/2)*(cos(theta)-1)^(1/2)), theta))*_C1/(2*M*r-a^2-r^2)}, [diff(diff(g(r, theta), r), r) = (sin(theta)*(sin(theta)^2*a^2-a^2-r^2)^2*(diff(diff(g(r, theta), theta), theta))-4*cos(theta)*((1/4)*a^4*sin(theta)^4+(-(1/2)*a^2+r*(M-(1/2)*r))*a^2*sin(theta)^2+(1/4)*(a^2+r^2)^2)*(diff(g(r, theta), theta))+2*M*sin(theta)*(diff(g(r, theta), r))*(a^2+r^2)*(sin(theta)^2*a^2-a^2+r^2))/(sin(theta)*(sin(theta)^2*a^2-a^2-r^2)^2*(2*M*r-a^2-r^2))]]

(4)

``

Download pde1.mw

Please Wait...