# Question:Factorization and ascending order of an expression

## Question:Factorization and ascending order of an expression

Maple 2015

Dear Users!
I hope are fine here. I got the following expression after a lot of computations

((1/2)*r*(r-1)+(1/6)*r*(r-1)*(r-2))*`&Delta;y`[-1]^3+(1/2)*r*(r-1)*`&Delta;y`[-1]^2+(1/120)*r*(r-1)*(r-2)*(r-3)*(r-4)*`&Delta;y`[-2]^7+((1/6)*r*(r-1)*(r-2)+(1/12)*r*(r-1)*(r-2)*(r-3)+(1/120)*r*(r-1)*(r-2)*(r-3)*(r-4))*`&Delta;y`[-2]^5+((1/6)*r*(r-1)*(r-2)+(1/24)*r*(r-1)*(r-2)*(r-3))*`&Delta;y`[-2]^4+((1/24)*r*(r-1)*(r-2)*(r-3)+(1/60)*r*(r-1)*(r-2)*(r-3)*(r-4))*`&Delta;y`[-3]^7+((1/24)*r*(r-1)*(r-2)*(r-3)+(1/60)*r*(r-1)*(r-2)*(r-3)*(r-4))*`&Delta;y`[-3]^6+r*`&Delta;y`[0]+y[0]

Actually, for the above, I want the factorization of each coefficient of `&Delta;y`[0], `&Delta;y`[-1], `&Delta;y`[-2] etc and the above expression shoud be in descending order given as:

y[0]+r*`&Delta;y`[0]+(1/2)*r*(r-1)*`&Delta;y`[-1]^2+(1/6)*r*(r-1)*(1+r)*`&Delta;y`[-1]^3+(1/24)*r*(r-1)*(r-2)*(1+r)*`&Delta;y`[-2]^4+(1/120)*r*(r-1)*(r-2)*(r+2)*(1+r)*`&Delta;y`[-2]^5+(1/120)*r*(r-1)*(r-2)*(r-3)*(r-4)*`&Delta;y`[-2]^7+(1/120)*r*(r-1)*(r-2)*(r-3)*(-3+2*r)*`&Delta;y`[-3]^6+(1/120)*r*(r-1)*(r-2)*(r-3)*(-3+2*r)*`&Delta;y`[-3]^7

I am waiting for your positive response. Thanks

﻿