Question: Determine if a nested list is completely rectangular and yield its deepest "rectangular" level?

For instance, “[1, 2, 3]”, “[``([1, 2]), uneval([3])]”, and “[[1, 2], [3, 'NULL']]” are fully rectangular. “[1, 2, [3]]”, “[`[]`(1, 2), [3]]”, and “[[1, 2], [3, NULL]]” are considered non-rectangular, but if we temporarily freeze the "ragged" parts or regard them as a depth-1 container, the corresponding expressions will seem rectangular. `type(…, list(Non(list)))` and `type(…, listlist(Non(list)))` check these, but they do not work for general cases.
To be specific, the desired output should be something like

IsRectangular([[[l, 2], [3, 4]], [[5, 6], [7, 8]]]);
 = 
                            true, 3

IsRectangular([[[O, l, 2], [3, 4]], [[5, 6], [7, 8]]]);
 = 
                            false, 2

IsRectangular([[[[l], 2], [3, 4]], [[5, 6], [7, 8]]], 3);
 = 
                            true, 3

IsRectangular([[O, [l, 2], [3, 4]], [[5, 6], [7, 8]]], 2);
 = 
                            false, 1

The results above can be obtained by some observations. However, if the input has deeper levels, evaluating this will be a punishing work: 

test__1 := [[[[[[[[-288],[-287],[-286]],[[-285],[-284],[-283]],[[-282],[-281],[-280]],[[-279],[-278],[-277]]]],[[[[-276],[-275],[-274]],[[-273],[-272],[-271]],[[-270],[-269],[-268]],[[-267],[-266],[-265]]]],[[[[-264],[-263],[-262]],[[-261],[-260],[-259]],[[-258],[-257],[-256]],[[-255],[-254],[-253]]]]],[[[[[-252],[-251],[-250]],[[-249],[-248],[-247]],[[-246],[-245],[-244]],[[-243],[-242],[-241]]]],[[[[-240],[-239],[-238]],[[-237],[-236],[-235]],[[-234],[-233],[-232]],[[-231],[-230],[-229]]]],[[[[-228],[-227],[-226]],[[-225],[-224],[-223]],[[-222],[-221],[-220]],[[-219],[-218],[-217]]]]]],[[[[[[-216],[-215],[-214]],[[-213],[-212],[-211]],[[-210],[-209],[-208]],[[-207],[-206],[-205]]]],[[[[-204],[-203],[-202]],[[-201],[-200],[-199]],[[-198],[-197],[-196]],[[-195],[-194],[-193]]]],[[[[-192],[-191],[-190]],[[-189],[-188],[-187]],[[-186],[-185],[-184]],[[-183],[-182],[-181]]]]],[[[[[-180],[-179],[-178]],[[-177],[-176],[-175]],[[-174],[-173],[-172]],[[-171],[-170],[-169]]]],[[[[-168],[-167],[-166]],[[-165],[-164],[-163]],[[-162],[-161],[-160]],[[-159],[-158],[-157]]]],[[[[-156],[-155],[-154]],[[-153],[-152],[-151]],[[-150],[-149],[-148]],[[-147],[-146],[-145]]]]]],[[[[[[-144],[-143],[-142]],[[-141],[-140],[-139]],[[-138],[-137],[-136]],[[-135],[-134],[-133]]]],[[[[-132],[-131],[-130]],[[-129],[-128],[-127]],[[-126],[-125],[-124]],[[-123],[-122],[-121]]]],[[[[-120],[-119],[-118]],[[-117],[-116],[-115]],[[-114],[-113],[-112]],[[-111],[-110],[-109]]]]],[[[[[-108],[-107],[-106]],[[-105],[-104],[-103]],[[-102],[-101],[-100]],[[-99],[-98],[-97]]]],[[[[-96],[-95],[-94]],[[-93],[-92],[-91]],[[-90],[-89],[-88]],[[-87],[-86],[-85]]]],[[[[-84],[-83],[-82]],[[-81],[-80],[-79]],[[-78],[-77],[-76]],[[-75],[-74],[-73]]]]]],[[[[[[-72],[-71],[-70]],[[-69],[-68],[-67]],[[-66],[-65],[-64]],[[-63],[-62],[-61]]]],[[[[-60],[-59],[-58]],[[-57],[-56],[-55]],[[-54],[-53],[-52]],[[-51],[-50],[-49]]]],[[[[-48],[-47],[-46]],[[-45],[-44],[-43]],[[-42],[-41],[-40]],[[-39],[-38],[-37]]]]],[[[[[-36],[-35],[-34]],[[-33],[-32],[-31]],[[-30],[-29],[-28]],[[-27],[-26],[-25]]]],[[[[-24],[-23],[-22]],[[-21],[-20],[-19]],[[-18],[-17],[-16]],[[-15],[-14],[-13]]]],[[[[-12],[-11],[-10]],[[-9],[-8],[-7]],[[-6],[-5],[-4]],[[-3],[-2],[-1],[-0]]]]]]],[[[[[[[0],[1],[2]],[[3],[4],[5]],[[6],[7],[8]],[[9],[10],[11]]]],[[[[12],[13],[14]],[[15],[16],[17]],[[18],[19],[20]],[[21],[22],[23]]]],[[[[24],[25],[26]],[[27],[28],[29]],[[30],[31],[32]],[[33],[34],[35]]]]],[[[[[36],[37],[38]],[[39],[40],[41]],[[42],[43],[44]],[[45],[46],[47]]]],[[[[48],[49],[50]],[[51],[52],[53]],[[54],[55],[56]],[[57],[58],[59]]]],[[[[60],[61],[62]],[[63],[64],[65]],[[66],[67],[68]],[[69],[70],[71]]]]]],[[[[[[72],[73],[74]],[[75],[76],[77]],[[78],[79],[80]],[[81],[82],[83]]]],[[[[84],[85],[86]],[[87],[88],[89]],[[90],[91],[92]],[[93],[94],[95]]]],[[[[96],[97],[98]],[[99],[100],[101]],[[102],[103],[104]],[[105],[106],[107]]]]],[[[[[108],[109],[110]],[[111],[112],[113]],[[114],[115],[116]],[[117],[118],[119]]]],[[[[120],[121],[122]],[[123],[124],[125]],[[126],[127],[128]],[[129],[130],[131]]]],[[[[132],[133],[134]],[[135],[136],[137]],[[138],[139],[140]],[[141],[142],[143]]]]]],[[[[[[144],[145],[146]],[[147],[148],[149]],[[150],[151],[152]],[[153],[154],[155]]]],[[[[156],[157],[158]],[[159],[160],[161]],[[162],[163],[164]],[[165],[166],[167]]]],[[[[168],[169],[170]],[[171],[172],[173]],[[174],[175],[176]],[[177],[178],[179]]]]],[[[[[180],[181],[182]],[[183],[184],[185]],[[186],[187],[188]],[[189],[190],[191]]]],[[[[192],[193],[194]],[[195],[196],[197]],[[198],[199],[200]],[[201],[202],[203]]]],[[[[204],[205],[206]],[[207],[208],[209]],[[210],[211],[212]],[[213],[214],[215]]]]]],[[[[[[216],[217],[218]],[[219],[220],[221]],[[222],[223],[224]],[[225],[226],[227]]]],[[[[228],[229],[230]],[[231],[232],[233]],[[234],[235],[236]],[[237],[238],[239]]]],[[[[240],[241],[242]],[[243],[244],[245]],[[246],[247],[248]],[[249],[250],[251]]]]],[[[[[252],[253],[254]],[[255],[256],[257]],[[258],[259],[260]],[[261],[262],[263]]]],[[[[264],[265],[266]],[[267],[268],[269]],[[270],[271],[272]],[[273],[274],[275]]]],[[[[276],[277],[278]],[[279],[280],[281]],[[282],[283],[284]],[[285],[286],[287]]]]]]]]:
test__2 := [[[[[[[[-288],[-287],[-286]],[[-285],[-284],[-283]],[[-282],[-281],[-280]],[[-279],[-278],[-277]]]],[[[[-276],[-275],[-274]],[[-273],[-272],[-271]],[[-270],[-269],[-268]],[[-267],[-266],[-265]]]],[[[[-264],[-263],[-262]],[[-261],[-260],[-259]],[[-258],[-257],[-256]],[[-255],[-254],[-253]]]]],[[[[[-252],[-251],[-250]],[[-249],[-248],[-247]],[[-246],[-245],[-244]],[[-243],[-242],[-241]]]],[[[[-240],[-239],[-238]],[[-237],[-236],[-235]],[[-234],[-233],[-232]],[[-231],[-230],[-229]]]],[[[[-228],[-227],[-226]],[[-225],[-224],[-223]],[[-222],[-221],[-220]],[[-219],[-218],[-217]]]]]],[[[[[[-216],[-215],[-214]],[[-213],[-212],[-211]],[[-210],[-209],[-208]],[[-207],[-206],[-205]]]],[[[[-204],[-203],[-202]],[[-201],[-200],[-199]],[[-198],[-197],[-196]],[[-195],[-194],[-193]]]],[[[[-192],[-191],[-190]],[[-189],[-188],[-187]],[[-186],[-185],[-184]],[[-183],[-182],[-181]]]]],[[[[[-180],[-179],[-178]],[[-177],[-176],[-175]],[[-174],[-173],[-172]],[[-171],[-170],[-169]]]],[[[[-168],[-167],[-166]],[[-165],[-164],[-163]],[[-162],[-161],[-160]],[[-159],[-158],[-157]]]],[[[[-156],[-155],[-154]],[[-153],[-152],[-151]],[[-150],[-149],[-148]],[[-147],[-146],[-145]]]]]],[[[[[[-144],[-143],[-142]],[[-141],[-140],[-139]],[[-138],[-137],[-136]],[[-135],[-134],[-133]]]],[[[[-132],[-131],[-130]],[[-129],[-128],[-127]],[[-126],[-125],[-124]],[[-123],[-122],[-121]]]],[[[[-120],[-119],[-118]],[[-117],[-116],[-115]],[[-114],[-113],[-112]],[[-111],[-110],[-109]]]]],[[[[[-108],[-107],[-106]],[[-105],[-104],[-103]],[[-102],[-101],[-100]],[[-99],[-98],[-97]]]],[[[[-96],[-95],[-94]],[[-93],[-92],[-91]],[[-90],[-89],[-88]],[[-87],[-86],[-85]]]],[[[[-84],[-83],[-82]],[[-81],[-80],[-79]],[[-78],[-77],[-76]],[[-75],[-74],[-73]]]]]],[[[[[[-72],[-71],[-70]],[[-69],[-68],[-67]],[[-66],[-65],[-64]],[[-63],[-62],[-61]]]],[[[[-60],[-59],[-58]],[[-57],[-56],[-55]],[[-54],[-53],[-52]],[[-51],[-50],[-49]]]],[[[[-48],[-47],[-46]],[[-45],[-44],[-43]],[[-42],[-41],[-40]],[[-39],[-38],[-37]]]]],[[[[[-36],[-35],[-34]],[[-33],[-32],[-31]],[[-30],[-29],[-28]],[[-27],[-26],[-25]]]],[[[[-24],[-23],[-22]],[[-21],[-20],[-19]],[[-18],[-17],[-16]],[[-15],[-14],[-13]]]],[[[[-12],[-11],[-10]],[[-9],[-8],[-7]],[[-6],[-5],[-4]],[[-3],[-2,0],[-0]]]]]]],[[[[[[[-1],[1],[2]],[[3],[4],[5]],[[6],[7],[8]],[[9],[10],[11]]]],[[[[12],[13],[14]],[[15],[16],[17]],[[18],[19],[20]],[[21],[22],[23]]]],[[[[24],[25],[26]],[[27],[28],[29]],[[30],[31],[32]],[[33],[34],[35]]]]],[[[[[36],[37],[38]],[[39],[40],[41]],[[42],[43],[44]],[[45],[46],[47]]]],[[[[48],[49],[50]],[[51],[52],[53]],[[54],[55],[56]],[[57],[58],[59]]]],[[[[60],[61],[62]],[[63],[64],[65]],[[66],[67],[68]],[[69],[70],[71]]]]]],[[[[[[72],[73],[74]],[[75],[76],[77]],[[78],[79],[80]],[[81],[82],[83]]]],[[[[84],[85],[86]],[[87],[88],[89]],[[90],[91],[92]],[[93],[94],[95]]]],[[[[96],[97],[98]],[[99],[100],[101]],[[102],[103],[104]],[[105],[106],[107]]]]],[[[[[108],[109],[110]],[[111],[112],[113]],[[114],[115],[116]],[[117],[118],[119]]]],[[[[120],[121],[122]],[[123],[124],[125]],[[126],[127],[128]],[[129],[130],[131]]]],[[[[132],[133],[134]],[[135],[136],[137]],[[138],[139],[140]],[[141],[142],[143]]]]]],[[[[[[144],[145],[146]],[[147],[148],[149]],[[150],[151],[152]],[[153],[154],[155]]]],[[[[156],[157],[158]],[[159],[160],[161]],[[162],[163],[164]],[[165],[166],[167]]]],[[[[168],[169],[170]],[[171],[172],[173]],[[174],[175],[176]],[[177],[178],[179]]]]],[[[[[180],[181],[182]],[[183],[184],[185]],[[186],[187],[188]],[[189],[190],[191]]]],[[[[192],[193],[194]],[[195],[196],[197]],[[198],[199],[200]],[[201],[202],[203]]]],[[[[204],[205],[206]],[[207],[208],[209]],[[210],[211],[212]],[[213],[214],[215]]]]]],[[[[[[216],[217],[218]],[[219],[220],[221]],[[222],[223],[224]],[[225],[226],[227]]]],[[[[228],[229],[230]],[[231],[232],[233]],[[234],[235],[236]],[[237],[238],[239]]]],[[[[240],[241],[242]],[[243],[244],[245]],[[246],[247],[248]],[[249],[250],[251]]]]],[[[[[252],[253],[254]],[[255],[256],[257]],[[258],[259],[260]],[[261],[262],[263]]]],[[[[264],[265],[266]],[[267],[268],[269]],[[270],[271],[272]],[[273],[274],[275]]]],[[[[276],[277],[278]],[[279],[280],[281]],[[282],[283],[284]],[[285],[286],[287]]]]]]]]:
test__3 := [[[[[[[[-288],[-287],[-286]],[[-285],[-284],[-283]],[[-282],[-281],[-280]],[[-279],[-278],[-277]]]],[[[[-276],[-275],[-274]],[[-273],[-272],[-271]],[[-270],[-269],[-268]],[[-267],[-266],[-265]]]],[[[[-264],[-263],[-262]],[[-261],[-260],[-259]],[[-258],[-257],[-256]],[[-255],[-254],[-253]]]]],[[[[[-252],[-251],[-250]],[[-249],[-248],[-247]],[[-246],[-245],[-244]],[[-243],[-242],[-241]]]],[[[[-240],[-239],[-238]],[[-237],[-236],[-235]],[[-234],[-233],[-232]],[[-231],[-230],[-229]]]],[[[[-228],[-227],[-226]],[[-225],[-224],[-223]],[[-222],[-221],[-220]],[[-219],[-218],[-217]]]]]],[[[[[[-216],[-215],[-214]],[[-213],[-212],[-211]],[[-210],[-209],[-208]],[[-207],[-206],[-205]]]],[[[[-204],[-203],[-202]],[[-201],[-200],[-199]],[[-198],[-197],[-196]],[[-195],[-194],[-193]]]],[[[[-192],[-191],[-190]],[[-189],[-188],[-187]],[[-186],[-185],[-184]],[[-183],[-182],[-181]]]]],[[[[[-180],[-179],[-178]],[[-177],[-176],[-175]],[[-174],[-173],[-172]],[[-171],[-170],[-169]]]],[[[[-168],[-167],[-166]],[[-165],[-164],[-163]],[[-162],[-161],[-160]],[[-159],[-158],[-157]]]],[[[[-156],[-155],[-154]],[[-153],[-152],[-151]],[[-150],[-149],[-148]],[[-147],[-146],[-145]]]]]],[[[[[[-144],[-143],[-142]],[[-141],[-140],[-139]],[[-138],[-137],[-136]],[[-135],[-134],[-133]]]],[[[[-132],[-131],[-130]],[[-129],[-128],[-127]],[[-126],[-125],[-124]],[[-123],[-122],[-121]]]],[[[[-120],[-119],[-118]],[[-117],[-116],[-115]],[[-114],[-113],[-112]],[[-111],[-110],[-109]]]]],[[[[[-108],[-107],[-106]],[[-105],[-104],[-103]],[[-102],[-101],[-100]],[[-99],[-98],[-97]]]],[[[[-96],[-95],[-94]],[[-93],[-92],[-91]],[[-90],[-89],[-88]],[[-87],[-86],[-85]]]],[[[[-84],[-83],[-82]],[[-81],[-80],[-79]],[[-78],[-77],[-76]],[[-75],[-74],[-73]]]]]],[[[[[[-72],[-71],[-70]],[[-69],[-68],[-67]],[[-66],[-65],[-64]],[[-63],[-62],[-61]]]],[[[[-60],[-59],[-58]],[[-57],[-56],[-55]],[[-54],[-53],[-52]],[[-51],[-50],[-49]]]],[[[[-48],[-47],[-46]],[[-45],[-44],[-43]],[[-42],[-41],[-40]],[[-39],[-38],[-37]]]]],[[[[[-36],[-35],[-34]],[[-33],[-32],[-31]],[[-30],[-29],[-28]],[[-27],[-26],[-25]]]],[[[[-24],[-23],[-22]],[[-21],[-20],[-19]],[[-18],[-17],[-16]],[[-15],[-14],[-13]]]],[[[[-12],[-11],[-10]],[[-9],[-8],[-7]],[[-6],[-5],[-4]],[[-3],[-2,-0]]]]]]],[[[[[[-1],[[1],[2]],[[3],[4],[5]],[[6],[7],[8]],[[9],[10],[11]]]],[[[[12],[13],[14]],[[15],[16],[17]],[[18],[19],[20]],[[21],[22],[23]]]],[[[[24],[25],[26]],[[27],[28],[29]],[[30],[31],[32]],[[33],[34],[35]]]]],[[[[[36],[37],[38]],[[39],[40],[41]],[[42],[43],[44]],[[45],[46],[47]]]],[[[[48],[49],[50]],[[51],[52],[53]],[[54],[55],[56]],[[57],[58],[59]]]],[[[[60],[61],[62]],[[63],[64],[65]],[[66],[67],[68]],[[69],[70],[71]]]]]],[[[[[[72],[73],[74]],[[75],[76],[77]],[[78],[79],[80]],[[81],[82],[83]]]],[[[[84],[85],[86]],[[87],[88],[89]],[[90],[91],[92]],[[93],[94],[95]]]],[[[[96],[97],[98]],[[99],[100],[101]],[[102],[103],[104]],[[105],[106],[107]]]]],[[[[[108],[109],[110]],[[111],[112],[113]],[[114],[115],[116]],[[117],[118],[119]]]],[[[[120],[121],[122]],[[123],[124],[125]],[[126],[127],[128]],[[129],[130],[131]]]],[[[[132],[133],[134]],[[135],[136],[137]],[[138],[139],[140]],[[141],[142],[143]]]]]],[[[[[[144],[145],[146]],[[147],[148],[149]],[[150],[151],[152]],[[153],[154],[155]]]],[[[[156],[157],[158]],[[159],[160],[161]],[[162],[163],[164]],[[165],[166],[167]]]],[[[[168],[169],[170]],[[171],[172],[173]],[[174],[175],[176]],[[177],[178],[179]]]]],[[[[[180],[181],[182]],[[183],[184],[185]],[[186],[187],[188]],[[189],[190],[191]]]],[[[[192],[193],[194]],[[195],[196],[197]],[[198],[199],[200]],[[201],[202],[203]]]],[[[[204],[205],[206]],[[207],[208],[209]],[[210],[211],[212]],[[213],[214],[215]]]]]],[[[[[[216],[217],[218]],[[219],[220],[221]],[[222],[223],[224]],[[225],[226],[227]]]],[[[[228],[229],[230]],[[231],[232],[233]],[[234],[235],[236]],[[237],[238],[239]]]],[[[[240],[241],[242]],[[243],[244],[245]],[[246],[247],[248]],[[249],[250],[251]]]]],[[[[[252],[253],[254]],[[255],[256],[257]],[[258],[259],[260]],[[261],[262],[263]]]],[[[[264],[265],[266]],[[267],[268],[269]],[[270],[271],[272]],[[273],[274],[275]]]],[[[[276],[277],[278]],[[279],[280],[281]],[[282],[283],[284]],[[285],[286],[287]]]]]]]]:

Is there a generalized test procedure (e.g., ListTools:-IsRectangular) that effectively works for any nested list of an arbitrary nesting level? 

Please Wait...