Question: When i do substitute in equation two parameter contain each other and again apear in my equation how put all my case in equation? without apearing again

how fixed this for ode test

restart

with(PDEtools)

with(Physics)

undeclare(prime)

`There is no more prime differentiation variable; all derivatives will be displayed as indexed functions`

(1)

``

pde := -I*(diff(U(xi), xi))*gamma*k*mu+I*gamma*(diff(U(xi), xi))*sigma*w+(diff(diff(U(xi), xi), xi))*gamma*k*w+U(xi)*gamma*mu*sigma+(2*I)*(diff(U(xi), xi))*k*sigma+2*alpha*U(xi)^3+(diff(diff(U(xi), xi), xi))*k^2-I*(diff(U(xi), xi))*w-U(xi)*sigma^2-U(xi)*mu

-I*gamma*(diff(U(xi), xi))*k*mu+I*gamma*(diff(U(xi), xi))*sigma*w+gamma*(diff(diff(U(xi), xi), xi))*k*w+gamma*U(xi)*mu*sigma+(2*I)*(diff(U(xi), xi))*k*sigma+2*alpha*U(xi)^3+(diff(diff(U(xi), xi), xi))*k^2-I*(diff(U(xi), xi))*w-U(xi)*sigma^2-U(xi)*mu

(2)

case1 := [mu = -(4*gamma*k*w+4*k^2-sigma^2)/(gamma*sigma-1), A[0] = 0, A[1] = -RootOf(_Z^2*alpha+gamma*k*w+k^2), B[1] = RootOf(_Z^2*alpha+gamma*k*w+k^2), w = (gamma*k*mu-2*k*sigma)/(gamma*sigma-1)]

[mu = -(4*gamma*k*w+4*k^2-sigma^2)/(gamma*sigma-1), A[0] = 0, A[1] = -RootOf(_Z^2*alpha+gamma*k*w+k^2), B[1] = RootOf(_Z^2*alpha+gamma*k*w+k^2), w = (gamma*k*mu-2*k*sigma)/(gamma*sigma-1)]

(3)

G1 := U(xi) = 2*RootOf(_Z^2*alpha+gamma*k*w+k^2)/sinh(2*xi)

U(xi) = 2*RootOf(_Z^2*alpha+gamma*k*w+k^2)/sinh(2*xi)

(4)

pde1 := subs(case1, pde)

I*gamma*(diff(U(xi), xi))*k*(4*gamma*k*w+4*k^2-sigma^2)/(gamma*sigma-1)+I*gamma*(diff(U(xi), xi))*sigma*(gamma*k*mu-2*k*sigma)/(gamma*sigma-1)+gamma*(diff(diff(U(xi), xi), xi))*k*(gamma*k*mu-2*k*sigma)/(gamma*sigma-1)-gamma*U(xi)*(4*gamma*k*w+4*k^2-sigma^2)*sigma/(gamma*sigma-1)+(2*I)*(diff(U(xi), xi))*k*sigma+2*alpha*U(xi)^3+(diff(diff(U(xi), xi), xi))*k^2-I*(diff(U(xi), xi))*(gamma*k*mu-2*k*sigma)/(gamma*sigma-1)-U(xi)*sigma^2+U(xi)*(4*gamma*k*w+4*k^2-sigma^2)/(gamma*sigma-1)

(5)

pde2 := subs(case1, pde1)

I*gamma*(diff(U(xi), xi))*k*(4*gamma*(gamma*k*mu-2*k*sigma)*k/(gamma*sigma-1)+4*k^2-sigma^2)/(gamma*sigma-1)+I*gamma*(diff(U(xi), xi))*sigma*(-gamma*k*(4*gamma*k*w+4*k^2-sigma^2)/(gamma*sigma-1)-2*k*sigma)/(gamma*sigma-1)+gamma*(diff(diff(U(xi), xi), xi))*k*(-gamma*k*(4*gamma*k*w+4*k^2-sigma^2)/(gamma*sigma-1)-2*k*sigma)/(gamma*sigma-1)-gamma*U(xi)*(4*gamma*(gamma*k*mu-2*k*sigma)*k/(gamma*sigma-1)+4*k^2-sigma^2)*sigma/(gamma*sigma-1)+(2*I)*(diff(U(xi), xi))*k*sigma+2*alpha*U(xi)^3+(diff(diff(U(xi), xi), xi))*k^2-I*(diff(U(xi), xi))*(-gamma*k*(4*gamma*k*w+4*k^2-sigma^2)/(gamma*sigma-1)-2*k*sigma)/(gamma*sigma-1)-U(xi)*sigma^2+U(xi)*(4*gamma*(gamma*k*mu-2*k*sigma)*k/(gamma*sigma-1)+4*k^2-sigma^2)/(gamma*sigma-1)

(6)

odetest(G1, pde2)

 

NULL

Download test_sol_for_PDE1.mw

Please Wait...