Question: Asympotic solution

Hi all, I solved this nonlinear DE de := diff(y(r), r, r)+2*(diff(y(r), r))/r+9*(16*43)*Pi^2*sqrt(Pi/(2*(1/43)^3))*polylog(3/2, -exp(1/43*(43-y(r))))/(16*Pi^2*sqrt(43)^3) = 0; with initial conditions y(0) = 0, D(y))(0) = 0 by using truncated series method in 'solve symbolically' option (Dsolve[interactive]). I am getting a solution like this: y(r) = -(3/4)*sqrt(86)*sqrt(Pi)*polylog(3/2, -exp(1))*sqrt(43)*r^2-(1161/80)*Pi*polylog(1/2, -exp(1))*polylog(3/2, -exp(1))*r^4+O(r^6). How can I get an asymptotic potential y(r) for r-> infinity? Thank you MS
Please Wait...