MaplePrimes Questions

Maple Player seems like it could be an outstanding piece of software, yet with the new operating system for Ipad, the program crashes immediately. I am unable to find any solutions. I also stumbled across a post in which Maplesoft is no longer providing support for the APP. Is this true?

I am attaching my file. Many of you have given great help on how to get dynamic Maple activities working.  My question again is along those lines. I have created a parabola with sliders a,h, and k.  What I am trying to do is have a button that says show vertex on the equation y=a(x-h)^2+k. However, when I connect the button with Plot3, I plot the the vertex in a new window.  Here is the most successful code I used:

Do(%Plot3=(plot([[%Slider2,%Slider1]],style=point,colour=blue,symbol=solidcircle,symbolsize=18)));

So I do get the point I want (h,k), but the point is not on the function itself.  I have tried muliple maple commands with no luck.  I am wonder how I can get the point (h,k) to be on the function when I hit the "show vertex" button. 

Parabolas_In_Vertex_.mw

 

Thank you for you time,

 

Nicholas

restart;

diffeq := diff(w(r), `$`(r, 1))+2*beta*(diff(w(r), `$`(r, 1)))^3-(1/2)*S*(r-m^2/r) = 0;

con := w(1) = 1;

ODE := {con, diffeq};

sol := dsolve(ODE, w(r), type = numeric);

 

How can i have numerical solution of the above differential equation with corresponding boundary condition?

 

Good time friends,

Recently, I saw this link http://math.stackexchange.com/q/613753/8581. There we asked to find the functions f(x) ang g(x) by having both composition functions fog(x) and gof(x). I know what to do to find any of f(x) (or g(x)) if I am given fog(x) (or gof(x)) respectively, but I confess I don't know what to do with this one. Can Maple overcome this knid of problem? Thanks for your time.

¿Does Maple 17 in that way has helped in the development of complex geometric problems?

¿que libros me recomiendan para aprender mas sobre matematica computacional?  

 

Hello every one,

restart;with(stats):

with(stats[statplots]):
with(plots):

x1_values:=[0.1, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80];

x2_values:=[1, 2, 3, 4, 5, 6, 7, 8];

x3_values:=[11, 12, 13, 14, 15, 16, 17, 18];

x4_values:=[10, 20, 30, 40, 50, 60, 70, 80];

y_values:=[30, 40, 60, 70, 90, 120, 150, 200];

How to fit the above data into the following equation

y=a+b*x1+c*x2+d*x3+e*x4+f*x1^2+g*x2^2+h*x3^2+i*x4^2+j*x1*x2+k*x1*x3+l*x1*x4

+m*x2*x3+n*x2*x4+p*x3*x4;

Thanks

 

 

 

@Markiyan Hirnyk 

 

First try, i change to 

result1 := Optimization:-Minimize([ans>=0, ans<=0],initialpoint=[.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003], feasibilitytolerance=0.01);

Error, (in Optimization:-Minimize) objective function must be an algebraic expression or procedure

Second try, i change to use ans for >=0, ans2 <=0

ans:=proc(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12) sol(parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12]);
add((X(tim[i])-x11[i])^2,i=1..N)+add((Y(tim[i])-y11[i])^2,i=1..N)+add((Z(tim[i])-z11[i])^2,i=1..N)+add((U(tim[i])-u11[i])^2>=0,i=1..N)
end proc;
ans2:=proc(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12) sol(parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12]);
add((X(tim[i])-x11[i])^2,i=1..N)+add((Y(tim[i])-y11[i])^2,i=1..N)+add((Z(tim[i])-z11[i])^2,i=1..N)+add((U(tim[i])-u11[i])^2<=0,i=1..N)
end proc;
ans(.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003);
result1 := Optimization:-Minimize([ans, ans2],initialpoint=[.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003], feasibilitytolerance=0.01);

Error, (in Optimization:-Minimize) objective function must be an algebraic expression or procedure

 

 

x11 := [0.208408965651696e-3, -0.157194487523421e-2, -0.294739401402979e-2, 0.788206708183853e-2, 0.499394753201753e-2, 0.191468321959759e-3, 0.504980449104750e-2, 0.222150494088535e-2, 0.132091821964287e-2, 0.161118434883258e-2, -0.281236534046873e-2, -0.398055875132037e-2, -0.111753680372819e-1, 0.588868146012489e-2, -0.354191562612469e-2, 0.984082837373291e-3, -0.116041186868374e-1, 0.603027845850267e-3, -0.448778128168742e-2, -0.127561485214862e-1, -0.412027655195339e-2, 0.379387381798949e-2, -0.602550446997765e-2, -0.605986284736216e-2, -0.751396992404410e-2, 0.633613424008655e-2, -0.677581832613623e-2]:
y11 := [ -21321.9719565717, 231.709204951251, 1527.92905167191, -32.8508507060675, 54.9408176234139, -99.4222178124229, -675.771433486265, 42.0838668074923, -12559.3183308951, 5.21412214166344*10^5, 1110.50031772203, 3.67149699000155, -108.543878970269, -8.48861069398811, -521.810552387313, 26.4792411876883, -8.32240296737599, -1085.40982521906, -44.1390030597906, -203.891397612798, -56.3746416571417, -218.205643256096, -178.991498697065, -42.2468018350386, .328546922634921, -1883.18308996621, 111.747881085748]:
z11 := [ 1549.88755331800, -329.861725802688, 8.54200301129155, -283.381775745327, -54.5469129127573, 1875.94875597129, -16.2230517860850, 6084.82381954832, 1146.15489803104, -456.460512914647, 104.533252701641, 16.3998365630734, 11.5710907832054, -175.370276462696, 33.8045539958636, 2029.50029336951, 1387.92643570857, 9.54717543291120, -1999.09590358328, 29.7628085078953, 2.58210333216737*10^6, 57.7969622731082, -6.42551196941394, -8549.23677077892, -49.0081775323244, -72.5156360537114, 183.539911458475]: 
u11 := [7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7];
a1 := Diff(x1(t),t) = k1*x1(t)+ k2*y1(t)+ k3*z1(t)+k4*u1(t);
b1 := Diff(y1(t),t) = k5*x1(t)+ k6*y1(t)+ k7*z1(t)+k8*u1(t);
c1 := Diff(z1(t),t) = k9*x1(t)+ k10*y1(t)+ k11*z1(t)+k12*u1(t);
d1 := Diff(u1(t),t) = 0;
ICS:=x1(1)=x11[1],y1(1)=y11[1],z1(1)=z11[1],u1(1)=u11[1];
sol:=dsolve({a1,b1,c1,d1, a2,b2,c2,d2,ICS}, numeric, method=rkf45, parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12],output=listprocedure);
X,Y,Z,U:=op(subs(sol,[x1(t),y1(t),z1(t),u1(t)]));
tim := [seq(n, n=1..27)];
N:=nops(tim):
ans:=proc(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12) sol(parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12]);
add((X(tim[i])-x11[i])^2,i=1..N)+add((Y(tim[i])-y11[i])^2,i=1..N)+add((Z(tim[i])-z11[i])^2,i=1..N)+add((U(tim[i])-u11[i])^2,i=1..N)
end proc;
ans(.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003);
result1 := Optimization:-Minimize([ans>=0, ans<=0],initialpoint=[.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003], feasibilitytolerance=0.01);

Hi everyone, I'm trying to print out Collatz's Conjecture's steps for any given value with the following code but it takes forever and prints nothing. Any idea on how I can get it working ?

 

checkCollatzValue:=proc(val) local res, remaining;
while res <> 1 do
remaining = irem(val, 2); remaining;
if remaining = 0 then res = val / 2; else res = val * 3 + 1; fi;
res;
od;
end proc;

In my research a I need to solve the linear equation (getting its null space) under some constraints.

The matrix is given below:

 

The constraints shall be (x[1]...x[16]>0, x[17]...x[20] arbitary...)

The solutions shall actually be a canonical combination of a lot of vectors, (canonical combination means possitive sums of vectors). And I wish to get those vectors. is there a way that I could achieve this by Maple?

> restart;

> with(plots):

> dp := proc(X,Y)

>     X[1]*Y[1]+X[2]*Y[2];

> end:

> nrm := proc(X)

>     sqrt(dp(X,X));

> end:

> r:=[3*cos(u),3*sin(u)];

> lambda:=1;

>  f:=proc(X)

> local Xu,s,T,N,kappa,v,n,pr,v1,z;

> Xu := [diff(X[1],u),diff(X[2],u)];

> s := nrm(Xu);

> T:=[diff(X[1],u)/s,diff(X[2],u)/s];

> N:=[-T[2],T[1]];

> kappa:=simplify(dp(diff(T,u),N))/s;

> v:=int(kappa,u=0..u);

> z:=v;

> if z=0 then -1 else  v1:=z fi;

> n:=[cos(v1)*N[1]+sin(v1)*T[1],cos(v1)*N[2]+sin(v1)*T[2]];

> pr:=([r[1]+lambda*n[1],r[2]+lambda*n[2]]);

> end:

> plot([f(r)[1],f(r)[2],-18..18]);

 

can you please help me , I'm not sure what is going wrong.

When you use the slider without Do(%MathContainer1 = StandardError(Variance, R)):
everything works ok but when you add Do(%MathContainer1 = StandardError(Variance, R)):
Maple Crashes.....

Strange...

LL_102)_Covariance_M.mw

@Markiyan Hirnyk 

First try, i change to 

result1 := Optimization:-Minimize([ans>=0, ans<=0],initialpoint=[.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003], feasibilitytolerance=0.01);

Error, (in Optimization:-Minimize) objective function must be an algebraic expression or procedure

Second try, i change to use ans for >=0, ans2 <=0

ans:=proc(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12) sol(parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12]);
add((X(tim[i])-x11[i])^2,i=1..N)+add((Y(tim[i])-y11[i])^2,i=1..N)+add((Z(tim[i])-z11[i])^2,i=1..N)+add((U(tim[i])-u11[i])^2>=0,i=1..N)
end proc;
ans2:=proc(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12) sol(parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12]);
add((X(tim[i])-x11[i])^2,i=1..N)+add((Y(tim[i])-y11[i])^2,i=1..N)+add((Z(tim[i])-z11[i])^2,i=1..N)+add((U(tim[i])-u11[i])^2<=0,i=1..N)
end proc;
ans(.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003);
result1 := Optimization:-Minimize([ans, ans2],initialpoint=[.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003], feasibilitytolerance=0.01);

Error, (in Optimization:-Minimize) objective function must be an algebraic expression or procedure

 

 

x11 := [0.208408965651696e-3, -0.157194487523421e-2, -0.294739401402979e-2, 0.788206708183853e-2, 0.499394753201753e-2, 0.191468321959759e-3, 0.504980449104750e-2, 0.222150494088535e-2, 0.132091821964287e-2, 0.161118434883258e-2, -0.281236534046873e-2, -0.398055875132037e-2, -0.111753680372819e-1, 0.588868146012489e-2, -0.354191562612469e-2, 0.984082837373291e-3, -0.116041186868374e-1, 0.603027845850267e-3, -0.448778128168742e-2, -0.127561485214862e-1, -0.412027655195339e-2, 0.379387381798949e-2, -0.602550446997765e-2, -0.605986284736216e-2, -0.751396992404410e-2, 0.633613424008655e-2, -0.677581832613623e-2]:
y11 := [ -21321.9719565717, 231.709204951251, 1527.92905167191, -32.8508507060675, 54.9408176234139, -99.4222178124229, -675.771433486265, 42.0838668074923, -12559.3183308951, 5.21412214166344*10^5, 1110.50031772203, 3.67149699000155, -108.543878970269, -8.48861069398811, -521.810552387313, 26.4792411876883, -8.32240296737599, -1085.40982521906, -44.1390030597906, -203.891397612798, -56.3746416571417, -218.205643256096, -178.991498697065, -42.2468018350386, .328546922634921, -1883.18308996621, 111.747881085748]:
z11 := [ 1549.88755331800, -329.861725802688, 8.54200301129155, -283.381775745327, -54.5469129127573, 1875.94875597129, -16.2230517860850, 6084.82381954832, 1146.15489803104, -456.460512914647, 104.533252701641, 16.3998365630734, 11.5710907832054, -175.370276462696, 33.8045539958636, 2029.50029336951, 1387.92643570857, 9.54717543291120, -1999.09590358328, 29.7628085078953, 2.58210333216737*10^6, 57.7969622731082, -6.42551196941394, -8549.23677077892, -49.0081775323244, -72.5156360537114, 183.539911458475]:
u11 := [7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7,8,7];
a1 := Diff(x1(t),t) = k1*x1(t)+ k2*y1(t)+ k3*z1(t)+k4*u1(t);
b1 := Diff(y1(t),t) = k5*x1(t)+ k6*y1(t)+ k7*z1(t)+k8*u1(t);
c1 := Diff(z1(t),t) = k9*x1(t)+ k10*y1(t)+ k11*z1(t)+k12*u1(t);
d1 := Diff(u1(t),t) = 0;
ICS:=x1(1)=x11[1],y1(1)=y11[1],z1(1)=z11[1],u1(1)=u11[1];
sol:=dsolve({a1,b1,c1,d1, a2,b2,c2,d2,ICS}, numeric, method=rkf45, parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12],output=listprocedure);
X,Y,Z,U:=op(subs(sol,[x1(t),y1(t),z1(t),u1(t)]));
tim := [seq(n, n=1..27)];
N:=nops(tim):
ans:=proc(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12) sol(parameters=[k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12]);
add((X(tim[i])-x11[i])^2,i=1..N)+add((Y(tim[i])-y11[i])^2,i=1..N)+add((Z(tim[i])-z11[i])^2,i=1..N)+add((U(tim[i])-u11[i])^2,i=1..N)
end proc;
ans(.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003);
result1 := Optimization:-Minimize([ans>=0, ans<=0],initialpoint=[.001,.002,.003,.001,.002,.003,.001,.002,.003,.003,.003,.003], feasibilitytolerance=0.01);

How can I get the Standard Errors of the covariance matrix in Maple?
I can simulate a covariance matrix in Maple as follows:

restart:
with(Statistics):
with(LinearAlgebra):

R := RandomMatrix(4, 4, generator = -15 .. 15, outputoptions = [datatype = float[8]]);
CovarianceMatrix(R);

but how do I find the standard errors?

EDIT:EDIT: I found what I was looking for. Thanks!

 

eq:=(V^(1-r/(r-s))*V*k/(r-2*s)+_C1)*V^(r/(r-s))=0;

 

equation 1

 

solve(eq,C1);

 

Can anyone tell me why nothing happens when I solve the above equation for C1.

I've been coming across this problem a few times lately, but sometimes when the equations are less complicated it does work from time to time. 

Any help would be greatly appreciated.

 

EDIT:  Thanks Markiyan Hirnyk

But I'm still having some trouble.

 

f:=t->(-r*t+s*t+V)^(r/(r-s));

eq2:=diff(C*f(t),t)+C*f(t)*r/(V+s*t-r*t)=s*k*t;

solve(eq2,C);

 


When I try solving eq2 nothing happens. 


This time C is just a variable I used and not one Maple generated.

So why doesn't it work with this particular equation?

 

 

First 1486 1487 1488 1489 1490 1491 1492 Last Page 1488 of 2429